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Abstract 

Self-organizing maps (SOMs) have commonly been used in temporal financial 
applications. This paper enhances the SOM paradigm for temporal data by presenting a 
framework for computing, summarizing and visualizing transition probabilities on the 
SOM. The framework includes computing matrices of node-to-node and node-to-cluster 
transitions and summarizing maximum state transition. The computations are visualized 
using feature plane representations. The future state transitions can also be used for 
finding low- and high-risk profiles as well as for assessing the evolution of probabilities 
over time, where the cluster centers express the representative financial states while the 
probability fluctuations represent their variation over time. We demonstrate the 
usefulness of the framework on two previously presented SOM models for temporal 
financial analysis: financial benchmarking of banks and monitoring indicators of 
currency crises. 
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1. Introduction  
Today’s decision makers are often faced 

by enormous amounts of financial data 
available for decision making purposes. 
Access to online financial databases, such as 
Thomson One, Amadeus and Bankscope, can 
provide nearly endless amounts of 
multivariate financial time-series data. 
However, due to non-linear relationships, 
high dimensionality and non-normality often 
inherent in financial data, utilizing these data 
can be a significant challenge for traditional 
statistical tools and spreadsheet programs. 
Instead, various data mining and pattern 
recognition tools have been applied for this 
purpose. 

One potential tool is the Self-Organizing 
Map (SOM) [1–2], an unsupervised neural 
network-based projection and clustering tool 
often used for exploratory data analysis. 
Although most of the early SOM applications 
have been in the area of medicine and 
engineering [3], the SOM has also been used 
in a large number of financial applications 
[4], including financial benchmarking [5–6], 
bankruptcy prediction [7–8], financial crisis 
monitoring [9–10], economic welfare analysis 
[11], customer churn analysis and 
segmentation [12–13], and stock price 
forecasting [14–15], just to name a few. 

The general SOM paradigm is an ideal tool 
for building visualization systems; however, 
manually identifying the positions and 
patterns in a SOM model is not necessarily a 
simple process. As the applications above 
illustrate, financial data typically belong to a 
time series. Variations of the SOM algorithm 
itself, using delayed or reinforced learning, 
have been proposed for dealing with temporal 
data by using leaky integrators or recurrent 
networks [16–18], for example. In Sarlin and 
Eklund [19–20], the SOM was extended to 
show membership degrees of each time-series 
point to each cluster using fuzzy C-means 
clustering as well as using a distance-based 
metric. This is suitable for assessing the 
current state, but says nothing about future 
transitions. Hence, a method for illustrating 
state transitions is required. Most often, 

trajectories [21] have been used in the SOM 
literature to illustrate these state transitions 
[e.g., 6–7,22]. While state transition patterns 
require a large number of observations for 
significance, trajectories can only be used on 
a limited set of data in order not to clutter the 
display. Thus, they provide no overall 
information about trends in the dataset. For 
finding these patterns, be they cyclical or not, 
the switches should be summarized from 
transition probabilities, something that is not 
apparent from studying the elements of the 
SOM units. Transition probabilities reveal the 
strengths and actual directions of the patterns 
as well as tolerates partial truth, uncertainty 
and imprecision by being both entirely data 
driven and probabilistic in nature. 

Hybrid approaches combining standard 
SOMs with machine learning classification 
techniques such as neural networks and 
support vector machines [14–15], have been 
proposed for modeling future state transitions, 
but these suffer from high complexity and 
computational cost as well as impaired 
visualization capabilities. Methods to directly 
deal with state transitions in SOMs have been 
introduced in previous applications, such as 
by using hidden Markov models [23] and 
one-level node-to-node transition 
probabilities [24–26].Here, we propose a 
framework that significantly further enhances 
the visualization and exploitation of 
transitions probabilities in previous 
applications. As we show state transitions on 
a two-level clustering, we enable discovery of 
detailed node-to-node and node-to-cluster 
patterns. Differences in transition 
probabilities between nodes within the same 
clusters reveal information since a 
homogeneous cluster does not necessitate 
similar state transitions. We also emphasize a 
user-oriented and easily interpretable 
visualization of the transition probability 
matrices; not only static visualizations but 
also the evolution of and reaction to transition 
probabilities over time. Finally, this 
framework can as well be used for company 
or country profiling by presenting low- and 
high-risk mean profiles. The contribution of 
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this paper is a novel framework for 
computing, visualizing and exploiting 
transition probabilities on a two-level SOM 
clustering.  

The SOM has been shown to be a 
particularly feasible tool for building visual 
monitoring systems for financial 
benchmarking of companies [5–6,20,27] and 
for monitoring indicators of country-level 
financial crises, such as currency, debt and 
systemic crises [9–10,22,28]. We show the 
added value of the transition probability 
framework by applying it to two of these 
SOM models: financial performance analysis 
of banks [20] and monitoring indicators of 
currency crises [22]. As Minsky’s [29] and 
Kindleberger’s [30] vindicated financial 
fragility view of a credit or asset cycle, 
transitions in currency crisis indicators can as 
well be justified according to the stages of the 
Kindleberger-Minsky model [31]. Similarly, 
fluctuations in performance of financial 
institutions justify transitions of firm-level 
data. 

The paper is structured as follows. Section 
2 introduces a framework for transition 
probabilities on the SOM. In Section 3, the 
framework is applied on financial time series, 
while Section 4 concludes by presenting our 
key findings. 

2. Methodology 
2.1. Self-Organizing Maps 

The SOM is a method with simultaneous 
clustering and projection capabilities first 
developed by Kohonen [1]. As the SOM 
algorithm is well-known and the main 
emphasis is on transitions on the SOM, we do 
not present details of it here – for further 
reference see [2]. The Viscovery SOMine 5.1 
package is used in this study mainly for its 
excellent visual representation. The training 
process starts with a linear initialization of the 
reference vectors. The first step compares all 
input data vectors xj (where j=1,2,…,N) with 
the network's reference vectors mi (where 
i=1,2,…,M) to find the best match mu: 
 

.min ijibj mxmx    (1) 

 
Then the second step adjusts each 

reference vector mi with the batch updating 
formula [2]: 
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where t is a discrete time coordinate and )( jiuh  
a decreasing function of neighborhood radii 
and time. 

As the map describes a multidimensional 
space on a two-dimensional grid of nodes, all 
information on the map cannot be visualized 
in two dimensions. To further enhance the 
visualization, the variables are separately 
shown on their own grids. Each feature plane 
displays the distribution of that variable on 
the map, with cold colors (blue) indicating 
low values and warm (red) indicating high 
values. As the feature planes are different 
views of the same map, one unique point 
represents the same node on all planes. 
Thereby, the characteristics of the SOM 
model can be identified by studying the 
underlying feature planes. 

The nodes of the map can further be 
divided into clusters of similar nodes. We use 
hierarchical clustering with the following 
modified Ward’s [32] criterion as a basis for 
merging two candidate clusters: 
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where k and l represent clusters, nk and nl  the 
cardinality of clusters k and l, and 2

lk cc   
the squared Euclidean distance between the 
cluster centers of clusters k and l, and the 
distance between non-adjacent clusters is 
infinite. When clusters k and l are merged to 
cluster h, the cardinality is the sum of the 
cardinalities of k and l and the centroid the 
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mean of ck and cl weighted by their 
cardinalities. 

2.3 Transition Probabilities on the SOM 

Transition probability matrices (TPMs) 
produce a probabilistic model of the temporal 
variation in a SOM model. The two-
dimensional grid of Section 2.1 is used to 
compute probabilities of switching from each 
node to a specified region in a specified time 
period, where the location per time unit is 
derived using Eq. 1 (vectors xj and mi consist 
of as many dimensions as data). First, we 
compute for each node mi the probability of 
transition to every other node mb: 
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where nib is the cardinality of data switching 
from mi to mb, t is a time coordinate and s is 
the time span for the switch. In other words, 
the transition probability )1( tpib  equals the 
cardinality of transitions from node mi to node 
mb divided by the sum of transition from node 
mi to m1,2,…,M. On a SOM grid with four 
nodes, this could in practice mean that for, 
say, node m1 the probability of being in 
period t+1 in m1,2…4 could be 0.5, 0.2, 0.2 and 
0.1, respectively. Formally, a TPM 
corresponds to maximum likelihood estimates 
of the switches or a first-order Markov model. 
It can, however, be computed for different 
time spans, as appropriate, and summarized to 
switches between clusters or any other region 
on the map. For example, node-to-cluster 
switches are computed using pil, where the 
transition refers to movements from reference 
vector i to cluster l (where l=1,2,…,C), thus: 
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For correcting coincidental results due to 
e.g. lack of data, the TPMs pib (as well as pil) 
can be computed as an average of several s 
values (where s=1,2,…,S): 
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To sum up, we propose the following three 

computations: 
 
1. TPMs for node-to-cluster switches 

( )( stpil   as in Eq. 5) for a specified set 
of s values. 

2. Summarize the TPMs from Step 1 by 
computing to which cluster l an 
observation in mi is most likely to 
switch and with what likelihood, i.e., 
showing maximum transition 
probabilities ( )(max ill p ) conditional on 
switching. This combines the direction 
and strength of the probability into a 
vector. 

3. For summarizing the computations in 
Steps 1 and 2 over time, compute 
average transition probabilities over a 
chosen set s values (  ),...,2,1( Stpil   as in 
Eq. 6).  

 
Transition probabilities for nodes can be 

visualized on feature planes, where one 
unique point represents the same node on the 
previously presented SOM grid. Thereby, the 
structure of the transitions on the SOM model 
can be directly identified by studying the 
underlying transition probability feature 
planes. The above computations are 
represented using the following three feature 
plane visualizations: 
 

1. Show the probability to transit to a 
particular cluster for each node on 
own feature planes, such that the color 
code of each node represents its 
probability to transit to that particular 
cluster. 

2. Summarize the information in Step 1 to 
one feature plane, where the color 
code in each node is the probability of 
the most likely switch and a label 
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represents that cluster (non-transiting 
nodes are left empty). 

3. Create the same feature planes as in 
Step 1 and 2, but as an average over a 
chosen set of s values. 

 
To normalize the color scales for different 

cluster sizes, but still show differences over 
time, we set the color scales of the feature 
planes for all s values and sets of s values as 
to that for s=1 (i.e. t+1). The temporal 
dimension of a bank or country can as well be 
represented by associating each time-series 
point with the transition probability of its 
BMU. This enables a line graph 
representation of the state switch probabilities 
over time, where cluster centers are 
representative financial states and the 
variation in transition probabilities indications 
of future financial performance. The 
transition probabilities are used for country 
profiling by presenting low- and high-risk 
mean profiles. 
 

3. Applications of the Transition 
Probability SOM on 
Financial Time Series 

3.1. Financial Benchmarking Model 

The financial benchmarking model was 
created as a complement to the ongoing EU 
stress testing of the European banking sector, 
on account of the fallout from the recent 
financial crisis. The data were retrieved from 
the Bankscope financial database, and 
consisted of 24 financial ratios for 855 
European banks, and covered annual data for 
the period 1992–2008, resulting in a total of 
9,655 rows of data. The SOM model was 
created by first applying PCA to obtain seven 
subdimensions of financial performance: 
capital ratios (PC1), loan ratios (PC2), 
profitability (PC3), interest revenue (PC4), 
non-operating items (PC5), subordinated debt 
(PC6) and loan loss provisions (PC7). In 
general, high values are better, with the 
exception of loan ratios, which reflect the 
inverse of capital to net loans and the 

liquidity of a bank’s assets, and loan loss 
provisions, which measure the ratio of risk to 
interest rate margins. In addition to these, the 
ratios Tier 1 and total (Tier 1 + Tier 2) capital 
were associated with the trained map, as these 
are the most important ratios from the 
perspective of stress testing. Moreover, 
Ward’s [32] method was used for second-
level clustering. For further details of the 
model, readers are referred to Sarlin and 
Eklund [20]. The SOM model, with data for 
Deutsche Bank and Banco Santander from 
2002–2008, is displayed in Figure 1, and its 
feature planes in Figure 2. 
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Figure 1. The SOM grid of the bank model. 
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Figure 2. Feature planes of the bank 

model. 
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The banks in clusters A, B and C can be 
seen as good performers, where A can be seen 
as the best. The banks in cluster D are 
average performers, as they show average 
values for all variables. The banks in cluster 
E, F and G can be seen as poor performers, 
where F can be seen as the poorest. Since 
TPMs to seven clusters impairs the 
interpretability of switches, and these clusters 
can easily be grouped by performance, we 
consider the best clusters as one (A, B and C), 
the average cluster as one (D) and the poor 
clusters as one (E, F and G). 

3.2. Transition Probabilities on the Financial 
Benchmarking Model 

We follow the above three-step framework 
when computing the transition probabilities 
for the financial benchmarking model. First, 
TPMs were computed as switches from nodes 
to clusters ( )( stpil  as in Eq. 5). Second, the 
direction and strength of the switches is 
summarized by computing maximum 
transition probabilities ( )(max ill p ) conditional 
on switching. Third, we compute the above 
steps for three different transition time spans 
(t+1, t+2 and t+3), and an average for S=3. A 
feature plane visualization of these 
computations is shown in Figure 3.  

The transitions on the SOM reveal several 
interesting patterns. The poorest group 
(clusters E, F and G) can be seen as 
inherently stable, as there are few transitions 
from the nodes in these clusters, irrespective 
of the time span. The best group (clusters A, 
B and C), on the other hand, is less stable, and 
the probability of transitions from the nodes 
in this cluster increases with time. The 
average group (cluster D) is an instable 
transition cluster. Based on the average 
probabilities, we can see that companies in 
clusters A, F and G are quite stable, while 
clusters B, C and E exhibit more transitions, 
and thus less stability.  

The difference in stability between cluster 
A and clusters B and C might be due to 
differing business activities, as the feature 
planes in Figure 2 show that cluster A differs 
from B and C primarily in capital ratios, loan 

interest revenue, and subordinated debt. 
These ratios indicate that cluster B and C are 
higher risk clusters than cluster A, and thus, 
probably more sensitive to changing business 
conditions, such as interest rates. For cluster 
B, an interesting strong cluster-to-cluster 
pattern is the high probabilities of movements 
to cluster D (average performance). 

Another interesting pattern is the 
difference in stability between cluster E and 
clusters F and G. While E, F and G are quite 
similar clusters in terms of performance, a 
clear difference can be seen in the high ratio 
of non-operating items of cluster E. Non-
operating items are items not related to 
ongoing, day to day operations, such as 
dividends, financial investments or significant 
write-downs, which might partially explain 
the unstable nature of positions in cluster E. 

The line graphs in Figure 4 show a 
practical company-specific application of the 
transition probability framework. The figure 
shows the state transition probabilities for 
Deutsche Bank and Banco Santander for 
2002–08. It enables assessing the evolution of 
probabilities over time, where the cluster 
centers express the representative financial 
states while the probability fluctuations 
represent their variation over time. A label 
above each time-series point denotes the 
cluster in which the company is currently 
located. The trajectories of the banks are 
shown on the SOM grid in Figure 1. Since the 
probability of staying in a cluster is most 
commonly highest, the interesting patterns are 
the addresses of the switches and the 
probability trend of the most likely switch. 
The transition probabilities for Deutsche 
Bank are dominated by two clusters, E and F. 
The switches between clusters E and F are 
thus expected, and the final trend indicates a 
future movement back to cluster F. For Banco 
Santander, the first movement from cluster G 
to D is unexpected, but the movement back to 
G is accordingly preceded by an increasing 
trend of the transition probability to that 
cluster.  
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Notes: On each row, the three first feature planes represent the probability to switch to the corresponding 
clusters (or group of clusters). The last feature plane on each row summarizes the direction and strength of the 
switches by showing maximum transition probabilities, where the color coding represents the probability, and 
the label the address of the switch. 

Figure 3. Feature planes of the bank model’s transition probabilities. 
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Figure 4. Line graphs of the transition probabilities for Deutsche Bank and Banco 

Santander. 
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 Figure 5. The SOM grid of the crisis model. 
 

Reserve loss

D

AB
C

-2.4 -2.0 -1.6 -1.2 -0.7 -0.3 0.1

Export loss

D

AB
C

-0.82 -0.59 -0.36 -0.13 0.10

ER Overvaluation

D

AB
C

-0.21 -0.01 0.20 0.41 0.62

CA Deficit

D

AB
C

-6.7 -4.0 -1.4 1.3 3.9 6.6 9.2

CRISIS

D

AB
C

0.002 0.012 0.023 0.034 0.044

PRE CRISIS

D

AB
C

0.06 0.13 0.20 0.27 0.35 0.42  
Figure 6. Feature planes of the crisis 

model. 

3.3. Financial Crisis Model 

The currency crisis model was created for 
visual monitoring of currency crisis 
indicators. The model consists of four 
monthly indicators of currency crises for 23 
emerging market economies from 1971:1–
1997:12. The indicators included are foreign 
exchange reserve loss, export loss, real 
exchange-rate overvaluation relative to trend 
and current account deficit to GDP, and 
were chosen and transformed based on a 
seminal early warning system created by 
IMF staff [33]. This model is, however, 
conceptually different from the 
benchmarking model. Each data point has a 
class dummy indicating the occurrence of a 
crisis, pre-crisis or tranquil period. A crisis 
period is defined to occur when exchange-
rate and reserve volatility exceeds a 
specified threshold, while the pre-crisis 
periods are defined as 24 months preceding a 

crisis and the rest of the periods are tranquil. 
The class labels were associated with the 
model by only affecting the updating of the 
reference vectors (Eq. 2), not the choice of 
the BMU (Eq. 1). The crisis model 
represents cyclical behavior resembling a 
currency crisis or financial stability cycle. 
Thus, the main purpose of the model is to 
visualize the evolution of financial indicators 
to assist the detection of vulnerabilities or 
threats to financial stability. The model is 
presented in detail in Sarlin [22] and a model 
on the same data set is evaluated in terms of 
out-of-sample accuracy in Sarlin and 
Marghescu [10]. Moreover, a stand-alone 
FCM clustering has been applied on a 
similar data set in [34]. 

The contribution of each input is 
standardized using columnwise 
normalization by range. However, the effects 
of extremities and outliers are not 
eliminated, since a crisis episode is per se an 
extreme event. The map consists of 137 
output neurons ordered on a 13x11 lattice, 
divided into four crisp clusters representing 
different time periods of the currency crisis 
cycle. The units were clustered using Ward’s 
[32] hierarchical clustering on the associated 
variables. The map and its feature planes are 
shown in Figures 5 and 6. The map is 
roughly divided into a tranquil cluster on the 
right side of the map (cluster A), a slight 
early-warning and a pre-crisis cluster in the 
lower-left part (cluster B and C), and a crisis 
cluster in the upper-left part (cluster D). 

3.4. Transition Probabilities on the Financial 
Crisis Model 

We again follow the three-step 
framework when computing the transition 
probabilities for the financial crisis model. 
The first two steps were computed as above, 
but the third step is computed for only one 
time span (t+1), and three averages for 
S={6,12,24}. A feature plane visualization 
of these computations is shown in Figure 7. 

Similarly as for the benchmarking model, 
the transitions on the SOM reveal several 
interesting patterns. The cyclical behavior 
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on the model makes it, however, 
conceptually different. The transition 
probabilities in Figure 7 show that the 
cyclicality follows the four clusters 
representing states of financial stability. The 
feature plane representation also shows that 
for longer averages the clusters become, 
obviously, less stable. The summarized 
feature planes reveal that most of the nodes 
in the tranquil cluster A switch to the early 

warning cluster B while a group of mid-
cluster nodes have a high probability of 
switching back to the crisis cluster D. 
Similarly, nodes in cluster B adjacent to 
cluster A have a high probability of moving 
to A while those adjacent to C move to C. 
From the pre-crisis cluster C, the highest 
probabilities are to switch to cluster B and 
then further on to the crisis cluster D. 

 
Cluster A (t+1)

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

Cluster B (t+1)

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

Cluster C (t+1)

0.00 0.12 0.25 0.37 0.49 0.61 0.74 0.86

Cluster D (t+1)

0.00 0.13 0.26 0.39 0.52 0.65 0.79 0.92

Summary (t+1)
B A A A A A A A D D C B

B A A A A A D B B B D
D D A A A A D D B B

A A D D D D D B B C
C A D A B D D D D B C C

C A A B D D D D D C
B B C A A B D D D B D D

B A A A B D D D B B D
B B C C A A B B D D

C C C A A B D B C
B C C C C A A B B B D

D

D

B

B

B
B

0.00 0.10 0.19 0.29 0.38 0.48 0.57 0.67 
Cluster A (t+{1,2,...,6})

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

Cluster B (t+{1,2,...,6})

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

Cluster C (t+{1,2,...,6})

0.00 0.12 0.25 0.37 0.49 0.61 0.74 0.86

Cluster D (t+{1,2,...,6})

0.00 0.13 0.26 0.39 0.53 0.66 0.79 0.92

Summary (t+{1,2,...,6})
B A A A A A A A D D C C

A A A A A A B B C B B
D D A A A A D D B B B

A A D D D D B B B B C
C A A A B B D D B B B B

C A A B B D D D D B D
B B C A A B D D D B B D

B A A A B B D D B B D
B B C C A A B B B B B D

C C A A A B B B B C C
D C C C C A A B B B D B

D

D

B

B

B

0.00 0.07 0.15 0.22 0.30 0.37 0.45 0.52 0.60 0.67 
Cluster A (t+{1,2,...,12})

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

Cluster B (t+{1,2,...,12})

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

Cluster C (t+{1,2,...,12})

0.00 0.12 0.25 0.37 0.49 0.61 0.74 0.86

Cluster D (t+{1,2,...,12})

0.00 0.13 0.26 0.39 0.53 0.66 0.79 0.92

Summary (t+{1,2,...,12})
A A A A A A A A D D C C

A A A A A A B B B B B
D A A A A A D D B B C B

A A D D D D B B D B C
C A A A B B D D B B B B

C A A B B D D B D D B
B B A A A B D D D B B D

B A A A B B D D B B D
B B C C A A B B B B B C

C C C A A B B B B C C
D C C C C A A B B B D C

D

A

B

B

B

0.00 0.07 0.15 0.22 0.30 0.37 0.44 0.52 0.59 0.67 

 

Cluster A (t+{1,2,...,24})

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

Cluster B (t+{1,2,...,24})

0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

Cluster C (t+{1,2,...,24})

0.00 0.12 0.25 0.37 0.49 0.61 0.74 0.86

Cluster D (t+{1,2,...,24})

0.00 0.13 0.26 0.39 0.53 0.66 0.79 0.92

Summary (t+{1,2,...,24})
A A A A A A A A D D C C

A A A A A A B B B B B
D A A A A A D D B B C B

A A D D D D B B D B C
C A A A B B D D B B B B

C A A B B D D B D D B
B B A A A B D D D B B D

B A A A B B D D B B D
B B C C A A B B B B B C

C C C A A B B B B C C
D C C C C A A B B B D C

D

A

B

B

B

0.00 0.07 0.15 0.22 0.30 0.37 0.44 0.52 0.59 0.67- 
Figure 7. Feature planes of the crisis model’s transition probabilities 

  
Figure 8. Student’s t-tests on profiles of high and low risk and the average country. 
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The transition probabilities are used for 
country profiling by presenting low- and 
high-risk mean profiles. The low-risk profile 
is a group of stable nodes with an extremely 
high probability of staying in the tranquil 
cluster A, while the high-risk profile is a 
group of nodes with the high probabilities of 
moving to the pre-crisis cluster C. This type 
of profiling is important, since finding cracks 
in the financial system at an early hour is 
important as it would allow introduction of 
policy actions to decrease or prevent further 
build up of vulnerabilities. Student’s t-tests on 
the high- and low-risk profiles and the 
average country are shown in Figure 8. For 
the high-risk profile, the exchange rate 
overvaluation is significantly larger and the 
export loss smaller than the average. For the 
low-risk profile, the current account deficit is 
significantly smaller and reserve loss and 
exchange-rate overvaluation larger than the 
average.  

4. Conclusion 
This paper enhances the SOM paradigm 

for temporal data by presenting a novel 
framework for computing, summarizing and 
visualizing transition probabilities on the 
SOM. The framework includes computing 
matrices of node-to-node and node-to-cluster 
transitions and summarizing maximum state 
transition. The computations are visualized 
using feature plane representations. The 
future state transitions can also be used for 
finding low- and high-risk profiles as well as 
for assessing the evolution of probabilities 
over time, where the cluster centers express 
the representative financial states while the 
probability fluctuations represent their 
variation over time. We demonstrate the 
usefulness of the framework on two 
previously presented SOM models for 
temporal financial analysis: financial 
benchmarking of banks and monitoring 
indicators of currency crises. In addition to 
transition patterns assessed for both models, 
we show an assessment of transition 
probabilities, and reactions to them, over time 
for two banks and conduct low and high-risk 

country profiling using the financial crisis 
model. Thus, while the information products 
of the standard SOM paradigm have been 
evaluated as superior to previously used 
methods [27], the framework for assessing 
strengths and directions of transition patterns 
on the SOM further enhances the usefulness 
of SOM-based visualization systems. In 
addition to financial applications, the 
transition probability framework could as 
well be applied on a broad range of other 
types of temporal problems. The main 
limitations of probabilistic modeling of state 
transitions are, however, the requirements of 
large datasets and small SOMs.  
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