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Abstract

Automated control systems have become increasingly popular. These types of
systems can be very complex, and in order for us to be able to understand and trust
them, we need formally derived and verified models. In this paper, we utilise the
Event-B formalism to stepwise model a system of automatic control of in-house
lighting, with the aim of possible integration with other control systems.
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1 Introduction
Automatically controlled in-house lighting systems have become popular in many
places. These systems, which can turn on or off lights based on factors such as
the presence or absence of motion and the ambient light level, can be used to
save energy and money by turning off lights that are deemed unnecessary for the
moment as well as only turning on those lights that are deemed necessary. In this
paper, we describe the modelling of a lighting control system in an adaptive house.
For this purpose, we use Event-B [2] and the Rodin Platform [3, 8]. We model
the system from an abstract specification, describing what the system should do,
stepwise towards a more concrete model, describing how the system should do
what it is supposed to. We aim to model our system in such a way that we later
will be able to integrate it with other adaptive house control systems [12].

In order for our model of a lighting control system to be feasible, we must
make some assumptions of the system we try to model. In this case, we assume
that we have a house partitioned into areas called rooms, which do not necessar-
ily coincide with the physical rooms but rather define discrete spaces in which all
lights are switched on or off together. We also assume that our adaptive house con-
tains two different types of sensors that can be used for controlling the lighting.
Sensors of the first type, which we will refer to as ambient light sensors, typi-
cally base their sensor states on the ambient light level being low enough or high
enough for lights to be enabled or disabled, respectively. Sensors of the second
type, which we refer to as motion sensors, typically base their sensor states on the
detection of some situation (such as motion) or not having detected the situation
for some time. We assume that if any sensor detects motion and the ambient light
level is low enough the lighting control system must turn the lights on, and if no
motion has been detected for some time the lighting control system must turn the
lights off. Furthermore, each room must have at least one ambient light sensor and
at least one motion sensor associated with it, and each sensor must in turn be as-
sociated with at least one room. The reason for this is not only to make modelling
easier, but has practical purposes as well; if there was a sensor not associated with
any room its readings would not have any effect, and if there was a room with no
sensors the system would have no input on which to base its decision to turn the
lights on or off in that room. We therefore do not model rooms in which lighting is
controlled manually. Finally, we do not model the internal workings of the sensors
or give their outputs as numerical readings, but rather assume that their readings
can be abstractly represented by some sensor states, which we will describe in
Section 3.

We proceed as follows. In Section 2 we shortly describe the Event-B formal-
ism to the extent used in this paper. Section 3 describes the process of modelling
our lighting control system. In Section 4 we conclude and discuss future work.
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2 Event-B
Event-B [2, 8] is a formal modelling language aimed at stepwise development of
correct systems. The Event-B formalism is based on the Action Systems formal-
ism [5, 13] and the B-Method [1]. Using Event-B, the development of a model in
carried out step by step from an abstract specification towards more concrete ones,
with the goal of reaching a model that is concrete enough to be implemented.

A model in Event-B consists of machines and contexts, as seen in Fig. 1. A
machine consists of variables, invariants, and events. A machine may see a con-
text, which contains constants, sets, and axioms about these. The invariants in
the machine are Boolean predicates that must evaluate to true for every reachable
state of the system, where the state is described by the variables and constants in
the model [2].

Machine M
Variables v
Invariants I
Events

Initialisation
evt1
· · ·
evtN

Sees−−−→

Context C
Carrier Sets d
Constants c
Axioms A

Figure 1: A machine M and a context C in Event-B

The events of a machine evaluate the variables (via event guards) and modify
them (via event actions). An event for which all the guards evaluate to true is said
to be enabled and can thereby execute and perform its actions, and if more than
one event is enabled the choice of which one should execute is non-deterministic.
If no event is enabled execution of the system is terminated, which can be desired
or undesired (as in the form of a deadlock) depending on the model. Event-B
action semantics are described using before-after (BA) predicates [2, 3], which
describe relationships between system states before and after the execution of an
event.

When using Event-B we employ a refinement-based approach to formal sys-
tem development. Refinement provides a means for stepwise development of a
system preserving correctness by gradually introducing new variables and events.
Horizontal or superposition refinement [7, 11] refers to adding new variables and
new events on top of the already existing variables and events. The added variables
and events should be introduced in a consistent way with respect to the abstract
machine. Vertical or data refinement [6] corresponds to replacing some abstract
variables with more concrete variables and accordingly changing the events. In
the development of the model we describe in this paper we use both refinement
strategies.

In order to prove the correctness of each step of the development, we need to
discharge a set of proof obligations. These are model semantics that can be math-
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ematically expressed in the form of logical sequents. The Rodin Platform tool [8]
generates proof obligations automatically and helps with discharging them, auto-
matically or interactively [3, 4]. All of the proof obligations generated for each
refinement step of our model can be discharged, thus ensuring the mathematical
correctness of the complete model.

3 Modelling Our Lighting Control System
We model our lighting control system to control the lighting system in a house
independently from other control systems. Lights will turn on or off based on
input from sensors, which we model as being in different sensor states based on
their readings. This separates the internal sensor readings from the situations that
the lighting control system needs to respond to. We model two different types of
sensors here. Sensors of the first type, which we will refer to as ambient light
sensors, typically base their sensor states on the ambient light level being low
enough or high enough for lights to be enabled or disabled, respectively. Sensors
of the second type, which we refer to as motion sensors, typically base their sensor
states on the detection of some situation (such as motion) or not having detected
the situation for some time. As previously mentioned, we assume that if any sen-
sor detects motion and the ambient light level is low enough the lighting control
system must turn the lights on, and if no motion has been detected for some time
the lighting control system must turn the lights off.

In Fig. 2 we show the sensor states for the motion sensors and the possible
transitions between them. The ambient light sensors transition only from sen-
sor lights on to sensor lights off and vice versa, and these transitions are there-
fore not shown.
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Figure 2: Motion sensor states and transitions in our model

Fig. 3 shows an overview of our lighting control system model and its re-
finements. In the following sections, we will shortly describe the development
process, starting from the most abstract model and continuing with refinements.
For the purpose of better readability axioms, invariants, guards, and actions are
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labelled axm, inv, grd and act, respectively, followed by the number of the re-
finement in which that particular line was added, an underscore ( ), and another
number to uniquely identify each line.
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Figure 3: The refinement process of our lighting control system model

3.1 Initial Model
Our initial model is very abstract. In our initial context we have a finite set
ROOMS. As previously mentioned, in our model a room does not necessarily
represent a physical room in the house, but rather represents a discrete space in
our adaptive house in which all the lights are switched on or off together. In our
initial machine we therefore have a variable lights on as a total function specify-
ing a Boolean value for all rooms in our house. Initially the lights are turned off
in all rooms.

CONTEXT SHL C0
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SETS
ROOMS

AXIOMS
axm0 1 : finite(ROOMS)

the number of rooms is finite

MACHINE SHL M0
SEES SHL C0
VARIABLES

lights on

INVARIANTS
inv0 1 : lights on ∈ ROOMS→ BOOL

lights on in a room, true or false
EVENTS
Initialisation

begin
act0 1 : lights on := ROOMS× {FALSE}

initially all lights are off
end

In our initial machine we also have two abstract events: LIGHTS ON for turning
the lights on and LIGHTS OFF for turning the lights off in any room. We will
later refine these events into more concrete ones.

EVENT LIGHTS ON =̂

any
r

where
grd0 1 : r ∈ ROOMS

any room
then

act0 1 : lights on(r) := TRUE

lights will be on
end

EVENT LIGHTS OFF =̂

any
r

where
grd0 1 : r ∈ ROOMS

any room
then

act0 1 : lights on(r) := FALSE

lights will be off
end
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3.2 First Refinement
In the first refinement, we introduce the finite sets SENSORS and SENSORSTATES
into the context. The set SENSORS is partitioned into motion sensors (motionsen-
sors) and ambient light sensors (ambientsensors), while the possible sensor states
are sensor lights off, sensor lights on and sensor lights unchanged. We also in-
troduce the constant sensor room specifying that each sensor must belong to at
least one room (axiom axm1 4) and there must be a sensor in each room. We fur-
ther specify that each room must have at least one motion sensor and one ambient
light sensor (axioms axm1 6 and axm1 7).

CONTEXT SHL C1
EXTENDS SHL C0
SETS

SENSORS

SENSORSTATES

CONSTANTS
motionsensors

ambientsensors

sensor lights off

sensor lights on

sensor lights unchanged

sensor room

AXIOMS
axm1 2 : finite(SENSORS)

we have a finite amount of sensors
axm1 3 : partition(SENSORS, motionsensors, ambientsensors)

the sensors are partitioned into motion sensors and ambient light sensors
axm1 4 : sensor room ∈ SENSORS↔↔ ROOMS

each sensor belongs to at least one room
axm1 5 : partition(SENSORSTATES, {sensor lights off}, {sensor lights on},

{sensor lights unchanged})
sensors can indicate that lights should be on, lights should remain unchanged, or
lights should be off

axm1 6 : ∀ra·ra ∈ ROOMS⇒
(∃sm·sm ∈ motionsensors ∧ (sm 7→ ra) ∈ sensor room)
in each room there is at least one sensor of the motion sensor type

axm1 7 : ∀rb·rb ∈ ROOMS⇒
(∃sn·sn ∈ ambientsensors ∧ (sn 7→ rb) ∈ sensor room)
in each room there is at least one sensor of the ambient light sensor type

In this refinement we also introduce a variable sensor state, which is modelled
as a total function specifying a sensor state for each sensor. However, the tran-
sitions between sensor states shown in Fig. 2 are not yet modelled, but instead
an abstract event CHANGE SENSOR STATE is introduced that later will be
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refined into more concrete events for transitioning between sensor states. In
this refinement the previous abstract events for changing lights on are refined
into the separate events LIGHTS TURN ON for lights going from off to on,
LIGHTS STILL ON for lights remaining on, LIGHTS TURN OFF for lights
going from on to off and LIGHTS STILL OFF for lights remaining off in a
room. The guards grd1 2, grd1 3 and grd1 4 in these events specify the condi-
tions that must hold for each of these events to be enabled, and at any time only
one of these four events can be enabled for each room. We have here assumed that
for the lights to turn from off to on there must be at least one motion sensor and
one ambient sensor in the room indicating that the lights should be on, otherwise
the lights will remain off. However, for lights that are on to turn off we require that
all motion sensors in that room indicate that the lights should be off, otherwise the
lights will remain on.

MACHINE SHL M1
REFINES SHL M0
SEES SHL C1
VARIABLES

lights on

sensor state

INVARIANTS
inv1 3 : sensor state ∈ SENSORS→ SENSORSTATES

EVENTS
Initialisation

begin
act0 1 : lights on := ROOMS× {FALSE}

initially all lights are off
act1 2 : sensor state := SENSORS× {sensor lights off}

initally all sensor think that the light should be off
end

EVENT LIGHTS TURN ON =̂

refines LIGHTS ON

any
r

where
grd0 1 : r ∈ ROOMS

any room
grd1 2 : lights on(r) = FALSE

lights are off
grd1 3 : ∃sa·sa ∈ motionsensors ∧ (sa 7→ r) ∈ sensor room

∧ sensor state(sa) = sensor lights on

at least one motion sensor thinks lights should be turned on
grd1 4 : ∃sb·sb ∈ ambientsensors ∧ (sb 7→ r) ∈ sensor room

∧ sensor state(sb) = sensor lights on

at least one ambient sensors think lights could be tuned on
then
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act0 1 : lights on(r) := TRUE

lights will be on
end

EVENT LIGHTS STILL ON =̂

refines LIGHTS ON
any

r

where
grd0 1 : r ∈ ROOMS

any room
grd1 2 : lights on(r) = TRUE

lights are on
grd1 3 : ¬(∀sa·sa ∈ motionsensors ∧ (sa 7→ r) ∈ sensor room

⇒ sensor state(sa) = sensor lights off)
not all motions sensors have timed out

then
skip

end
EVENT LIGHTS TURN OFF =̂

refines LIGHTS OFF
any

r

where
grd0 1 : r ∈ ROOMS

any room
grd1 2 : lights on(r) = TRUE

lights are on
grd1 3 : ∀sa·sa ∈ motionsensors ∧ (sa 7→ r) ∈ sensor room

⇒ sensor state(sa) = sensor lights off

all motions sensors in this room think lights should be turned off
then

act0 1 : lights on(r) := FALSE

lights will be off
end

EVENT LIGHTS STILL OFF =̂

refines LIGHTS OFF
any

r

where
grd0 1 : r ∈ ROOMS

any room
grd1 2 : lights on(r) = FALSE

lights are off
grd1 3 : ¬(∃sa·sa ∈ motionsensors ∧ (sa 7→ r) ∈ sensor room

∧ sensor state(sa) = sensor lights on)
∨ ¬(∃sb·sb ∈ ambientsensors ∧ (sb 7→ r) ∈ sensor room

∧ sensor state(sb) = sensor lights on)
no motion sensor or no ambient sensor thinks lights should be on

then
skip
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end
EVENT CHANGE SENSOR STATE =̂

any
s

t

where
grd1 1 : s ∈ SENSORS

any sensor
grd1 2 : t ∈ SENSORSTATES

any sensor state
then

act1 1 : sensor state(s) := t set the state of that sensor
end

3.3 Second Refinement
In the second refinement step we do not add anything to the context, but in the
machine we refine the previous abstract event CHANGE SENSOR STATE into
several different events. We have three different events for motion sensors, corre-
sponding to the transitions between states in Fig. 2, and two different events for
ambient light sensors, corresponding to the ambient light level being low enough
that lights could be turned on and high enough that lights should not be turned on,
respectively. As we have replaced an abstract notion of sensor state with a con-
crete one, we use a witness (keyword with) in each event for the relation between
the previous abstract parameter t and its refinement in each event.

EVENT SENSOR MOTION DETECTED =̂

refines CHANGE SENSOR STATE
any

s

where
grd2 1 : s ∈ motionsensors

any motion sensor
with

t : t = sensor lights on

then
act2 1 : sensor state(s) := sensor lights on

motion detcted, lights should be on
end

EVENT SENSOR MOTION UNDETECTED =̂

refines CHANGE SENSOR STATE
any

s

where
grd2 1 : s ∈ motionsensors

any motion sensor
grd2 3 : sensor state(s) 6= sensor lights off

lights are not off
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with
t : t = sensor lights unchanged

then
act2 1 : sensor state(s) := sensor lights unchanged

motion not detected, lights should remain unchanged
end

EVENT SENSOR MOTION TIMEOUT =̂

refines CHANGE SENSOR STATE
any

s

where
grd2 1 : s ∈ motionsensors

any motion sensor
grd2 3 : sensor state(s) = sensor lights unchanged

lights should have been unchanged
with

t : t = sensor lights off

then
act2 1 : sensor state(s) := sensor lights off

sensor timeout, lights should turn off
end

EVENT SENSOR AMBIENT LOW =̂

refines CHANGE SENSOR STATE
any

s

where
grd2 1 : s ∈ ambientsensors

any ambient sensor
with

t : t = sensor lights on

then
act2 1 : sensor state(s) := sensor lights on

ambient sensor indicates lights should be on
end

EVENT SENSOR AMBIENT HIGH =̂

refines CHANGE SENSOR STATE
any

s

where
grd2 1 : s ∈ ambientsensors

any ambient sensor
with

t : t = sensor lights off

then
act2 1 : sensor state(s) := sensor lights off

ambient sensor indicates lights should be off
end

10



3.4 Third Refinement
In the third refinement we introduce the notion of time. Each motion sensor
has an associated timeout value via the sensor timeout constant, and the vari-
able time is used to model the global time. We also introduce a variable sen-
sor motion time for modelling when sensors last detected motion, which will be
used with the sensor timeout constant to enable each sensor to transition from the
sensor lights unchanged state to the sensor lights off state after a certain amount
of time has passed.

The final three invariants added in this refinement are interesting provable
properties regarding the sensor states. The first one, inv3 7, states that for all
motions sensors that are in the sensor lights on state, there must be a notion of
at what time the sensor last detected motion, i.e., the sensor must have detected
motion at some point. The second one, inv3 8, makes a similar claim for sensors
in the sensor lights unchanged state. The third of the last three new invariants,
inv3 9, states that if a sensor is in the sensor lights off state, and there is a notion
of at what time the sensor last detected motion, the difference between the cur-
rent global time and the time the sensor detected motion must be larger than the
timeout value for that sensor. Thus, a sensor will be in the sensor lights off state
if either it has never detected motion at all or sufficient time has passed since the
sensor last detected motion.

CONTEXT SHL C3
EXTENDS SHL C1
CONSTANTS

sensor timeout

AXIOMS
axm3 6 : sensor timeout ∈ motionsensors→ N

each motion sensor times out after this time

MACHINE SHL M3
REFINES SHL M2
SEES SHL C3
VARIABLES

lights on

sensor state

time

sensor motion time

INVARIANTS
inv3 5 : time ∈ N

global time
inv3 6 : sensor motion time ∈ motionsensors 7→ N

the time when a sensor last detected motion
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inv3 7 : ∀sa·sa ∈ motionsensors ∧ sensor state(sa) = sensor lights on ⇒
(sa ∈ dom(sensor motion time))
if a sensor has detected motion, it has done so at a certain time

inv3 8 : ∀sb·sb ∈ motionsensors ∧ sensor state(sb) =
sensor lights unchanged⇒ (sb ∈ dom(sensor motion time))
if a sensor has previously detected motion, it has done so at a certain time

inv3 9 : ∀sc·sc ∈ motionsensors ∧ sensor state(sc) = sensor lights off⇒
(sc ∈ dom(sensor motion time) ⇒ ((time − sensor motion time(sc)) >
sensor timeout(sc)))
if a sensor has timed out, it has either never detected motion or detected it a longer
time ago than its timeout value

Most of the events in our model remain unchanged in this refinement. We only
update the SENSOR MOTION DETECTED event to make note of the time
a motion sensor last detected motion, and the SENSOR MOTION TIMEOUT
event to use the previously noted time to require that a longer time than the timeout
value of the sensor has passed before the sensor enters the sensor lights off state.
We also add an abstract event TIME PASSING to update the global time in our
model.

EVENT SENSOR MOTION DETECTED =̂

refines SENSOR MOTION DETECTED

any
s

where
grd2 1 : s ∈ motionsensors

any motion sensor
then

act2 1 : sensor state(s) := sensor lights on

lights should be on
act3 2 : sensor motion time(s) := time

update the time when motion was last detected
end

EVENT SENSOR MOTION TIMEOUT =̂

refines SENSOR MOTION TIMEOUT

any
s

where
grd2 1 : s ∈ motionsensors

any motion sensor
grd2 3 : sensor state(s) = sensor lights unchanged

lights should have been unchanged
grd3 4 : (time− sensor motion time(s)) > sensor timeout(s)

sensor has not detected motion for a time longer than its timeout value
then

act2 1 : sensor state(s) := sensor lights off

lights should turn off
end
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EVENT TIME PASSING =̂

begin
act3 1 : time := time+ 1

update global time
end

3.5 Fourth Refinement
In the fourth refinement of our lighting control model, we do not add anything
to the context. However, until now the ordering in which the events in the ma-
chine are able to execute has been non-deterministic. In this refinement step we
change this by introducing two new variables into the machine; sensor checked
and room checked. These variables keep track of which sensors have had their
states checked and which rooms have been checked for whether their lights should
be on or off, respectively, during the current time cycle. The model requires that
the states of all sensors in a room have been checked before the checking of light-
ing status in a room can be performed, which is ensured by the invariants inv4 13
and inv4 14, and that all the rooms have been checked before the time is updated,
which is ensured by the guard grd4 1 of the refined TIME PASSING event. In
this way we ensure that the lights will actually turn on or off when the situation
warrants, instead of merely making it possible for them to do so.

MACHINE SHL M4
REFINES SHL M3
SEES SHL C3
VARIABLES

lights on

sensor state

time

sensor motion time

sensor checked

room checked

INVARIANTS
inv4 10 : sensor checked ∈ SENSORS 7→ BOOL

any sensors may have been checked this cycle
inv4 11 : room checked ∈ ROOMS 7→ BOOL

any rooms may have been checked this cycle
inv4 12 : ∀sn·sn ∈ dom(sensor checked)⇒ sensor checked(sn) = TRUE

if a sensor has been checked, its value is true
inv4 13 : ∀ro, so·ro ∈ ROOMS ∧ so ∈ SENSORS ∧ (so 7→ ro) ∈ sensor room

∧ so /∈ dom(sensor checked)⇒ ro /∈ dom(room checked)
if a sensor in a room has not been checked, that room has not been checked
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inv4 14 : ∀rf, sf·rf ∈ ROOMS ∧ sf ∈ SENSORS ∧ (sf 7→ rf) ∈ sensor room

∧ rf ∈ dom(room checked)⇒ sf ∈ dom(sensor checked)
if a room has been checked, all sensors in that room have been checked

To ensure that the invariants hold, we have added guards grd4 5 and grd4 6 to all
light events ensuring that we only check each room once during each time cycle,
and only after all sensors associated with that room have been checked. Likewise,
we add a guard grd4 2 to each sensor event ensuring that each sensor is checked
only once during each time cycle. Finally, the TIME PASSING event is refined
to require that all rooms have been checked before it will be enabled, and as the
global time is updated it resets the room checked and sensor checked to empty
sets.

EVENTS
Initialisation

begin
act0 1 : lights on := ROOMS× {FALSE}

initially all lights are off
act1 2 : sensor state := SENSORS× {sensor lights off}

initally all sensor think that the light should be off
act2 3 : time := 0

start at time 0
act2 4 : sensor motion time := ∅

no sensor has detected motion ever
act4 5 : sensor checked := ∅

and we haven’t checked any sensors this cycle
act4 6 : room checked := ∅

and we haven’t checked any rooms this cycle
end

EVENT LIGHTS TURN ON =̂

refines LIGHTS TURN ON
any

r

where
grd0 1 : r ∈ ROOMS

any room
grd1 2 : lights on(r) = FALSE

lights are off
grd1 3 : ∃sa·sa ∈ motionsensors ∧ (sa 7→ r) ∈ sensor room

∧ sensor state(sa) = sensor lights on

at least one motion sensor thinks lights should be turned on
grd1 4 : ∃sb·sb ∈ ambientsensors ∧ (sb 7→ r) ∈ sensor room

∧ sensor state(sb) = sensor lights on

at least one ambient sensors think lights could be tuned on
grd4 5 : r /∈ dom(room checked)

we haven’t checked the room yet
grd4 6 : ∀sc·sc ∈ SENSORS ∧ (sc 7→ r) ∈ sensor room

⇒ (sc ∈ dom(sensor checked))
but we have checked all the sensors in the room
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then
act0 1 : lights on(r) := TRUE

lights will be on
act4 2 : room checked(r) := TRUE

and note that we have checked this room
end

EVENT LIGHTS STILL ON =̂

refines LIGHTS STILL ON

any
r

where
grd0 1 : r ∈ ROOMS

any room
grd1 2 : lights on(r) = TRUE

lights are on
grd1 3 : ¬(∀sa·sa ∈ motionsensors ∧ (sa 7→ r) ∈ sensor room

⇒ sensor state(sa) = sensor lights off)
not all motions sensors have timed out

grd4 5 : r /∈ dom(room checked)
we haven’t checked the room yet

grd4 6 : ∀sc·sc ∈ SENSORS ∧ (sc 7→ r) ∈ sensor room

⇒ (sc ∈ dom(sensor checked))
but we have checked all the sensors in the room

then
act4 2 : room checked(r) := TRUE

note that we have checked this room
end

EVENT LIGHTS TURN OFF =̂

refines LIGHTS TURN OFF

any
r

where
grd0 1 : r ∈ ROOMS

any room
grd1 2 : lights on(r) = TRUE

lights are on
grd1 3 : ∀sa·sa ∈ motionsensors ∧ (sa 7→ r) ∈ sensor room

⇒ sensor state(sa) = sensor lights off

all motions sensors in this room think lights should be turned off
grd4 5 : r /∈ dom(room checked)

we haven’t checked the room yet
grd4 6 : ∀sc·sc ∈ SENSORS ∧ (sc 7→ r) ∈ sensor room

⇒ (sc ∈ dom(sensor checked))
but we have checked all the sensors in the room

then
act0 1 : lights on(r) := FALSE

lights will be off
act4 2 : room checked(r) := TRUE

note that we have checked this room
end
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EVENT LIGHTS STILL OFF =̂

refines LIGHTS STILL OFF

any
r

where
grd0 1 : r ∈ ROOMS

any room
grd1 2 : lights on(r) = FALSE

lights are off
grd1 3 : ¬(∃sa·sa ∈ motionsensors ∧ (sa 7→ r) ∈ sensor room

∧ sensor state(sa) = sensor lights on)
∨ ¬(∃sb·sb ∈ ambientsensors ∧ (sb 7→ r) ∈ sensor room

∧ sensor state(sb) = sensor lights on)
no motion sensor or no ambient sensor thinks lights should be on

grd4 5 : r /∈ dom(room checked)
we haven’t checked the room yet

grd4 6 : ∀sc·sc ∈ SENSORS ∧ (sc 7→ r) ∈ sensor room

⇒ (sc ∈ dom(sensor checked))
but we have checked all the sensors in the room

then
act4 2 : room checked(r) := TRUE

note that we have checked this room
end

EVENT SENSOR MOTION DETECTED =̂

refines SENSOR MOTION DETECTED

any
s

where
grd2 1 : s ∈ motionsensors

any motion sensor
grd4 2 : s /∈ dom(sensor checked)

as long as we haven’t checked it yet this cycle
then

act2 1 : sensor state(s) := sensor lights on

lights should be on
act3 2 : sensor motion time(s) := time

update the time when motion was last detected
act4 3 : sensor checked(s) := TRUE

note that we have checked this sensor
end

EVENT SENSOR MOTION UNDETECTED =̂

refines SENSOR MOTION UNDETECTED

any
s

where
grd2 1 : s ∈ motionsensors

any motion sensor
grd2 3 : sensor state(s) 6= sensor lights off

lights are not off
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grd4 2 : s /∈ dom(sensor checked)
we haven’t checked the sensor yet this cycle

then
act2 1 : sensor state(s) := sensor lights unchanged

motion not detected, lights should remain unchanged
act4 3 : sensor checked(s) := TRUE

note that we have checked this sensor
end

EVENT SENSOR MOTION TIMEOUT =̂

refines SENSOR MOTION TIMEOUT

any
s

where
grd2 1 : s ∈ motionsensors

any motion sensor
grd2 3 : sensor state(s) = sensor lights unchanged

lights should have been unchanged
grd3 4 : (time− sensor motion time(s)) > sensor timeout(s)

sensor has not detected motion for a time longer than its timeout value
grd4 2 : s /∈ dom(sensor checked)

we haven’t checked the sensor yet this cycle
then

act2 1 : sensor state(s) := sensor lights off

lights should turn off
act4 3 : sensor checked(s) := TRUE

note that we have checked this sensor
end

EVENT SENSOR AMBIENT LOW =̂

refines SENSOR AMBIENT LOW

any
s

where
grd2 1 : s ∈ ambientsensors

any ambient sensor
grd4 2 : s /∈ dom(sensor checked)

we haven’t checked the sensor yet this cycle
then

act2 1 : sensor state(s) := sensor lights on

ambient sensor indicates lights should be on
act4 3 : sensor checked(s) := TRUE

note that we have checked this sensor
end

EVENT SENSOR AMBIENT HIGH =̂

refines SENSOR AMBIENT HIGH

any
s

where
grd2 1 : s ∈ ambientsensors

any ambient sensor
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grd4 2 : s /∈ dom(sensor checked)
we haven’t checked the sensor yet this cycle

then
act2 1 : sensor state(s) := sensor lights off

ambient sensor indicates lights should be off
act4 3 : sensor checked(s) := TRUE

and note that we have checked this sensor
end

EVENT TIME PASSING =̂

refines TIME PASSING

when
grd4 1 : dom(room checked) = ROOMS

time increases only when we have checked all the rooms
then

act3 1 : time := time+ 1

update global time
act4 2 : room checked := ∅

we start checking rooms from scratch
act4 3 : sensor checked := ∅

dito for sensors
end

With the fourth refinement of our model we have created a sufficiently concrete
model of a lighting control system. We started from an abstract model of what the
system should do, i.e., set the lights to be on or off in a room, and now we have
a model of how that should be done, i.e., by checking the states of all the sensors
in all the rooms and based on those decide for each room whether to switch the
lights or let them remain unchanged.

4 Conclusion
Automated control systems can be very complex. Using the refinement approach
to development, a system can be described at different levels of abstraction, and
the consistency in and between levels can be proved mathematically. Refine-
ment allows us to efficiently cope with complexity of distributed systems veri-
fication and gradually derive an implementation with the desired properties and
behaviour [2].

We have created a model of an in-house lighting control system, starting from
an abstract specification and stepwise introducing functionality until approach-
ing a concrete implementation. In this model, all sensor readings, represented by
abstract sensor states, will be checked each time cycle, and based on these the
decision will be made to switch the lights in each room or let them remain un-
changed in the present time cycle. In the future, we hope to integrate this control
system with other formally developed control systems [12] to create an integrated
model of such a system of systems [10].
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