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Abstract

When data is transferred between nodes in a network, it is often transferred
in-order. However, in distributed systems, such as peer-to-peer networks and
cloud-based systems, transferring data out-of-order can be advantageous, for
instance by improving transfer speed, availability and reliability through the
use of different algorithms. With the intent of creating a reusable formalism
that can describe the complexities of out-of-order content transfer in a simple
manner, while being powerful enough to support as large a variety of dis-
tributed content transfer algorithms as possible, we introduce the Specification
for Content Transfer Algorithms (SPECTA) language. In this report, we also
show how algorithms written in this language can be translated into other
formalisms such as Event-B for analysis, verification or code generation.

TUCS Laboratory
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1 Introduction

In today’s world, many applications use or require large amounts of data. In
many cases, this data must be transferred from a network node to another. In
systems using the traditional client-server model, this transfer usually happens
in-order; that is, data is transferred in the same order it is stored. However, in
distributed systems, such as peer-to networks and cloud-based systems, there
are other ways of transferring data. Out-of-order content transfer algorithms
may improve reliability, availability and transfer speed, and therefore there is
a need to understand different content transfer algorithms.

Previously, content transfer algorithms have usually been described in a
plain text format, easily understandable by humans, or in a formalism or
program code that, although written by humans, is intended for machine
interpretation. Examples of the former include BiToS [24] and DAW [19],
and we have previously worked on the latter [21, 22]. In a more general case,
describing what an algorithm does in a human readable format, especially for
the purpose of learning, is often done using pseudocode, i.e., an informal high-
level description of an algorithm resembling code in a programming language.
Pseudocode has the unfortunate property of not being standardised, as well
as, due to the way program flow is structured in different languages, being
more or less tied to a specific programming language.

We aim to create a reusable formalism, in which we can describe the
complexities of out-of-order content transfer in a manner that is easy to
understand for anyone who is familiar with the problem solved by a spe-
cific algorithm, without requiring knowledge of what way the solution is
implemented. At the same time, this formalism should be powerful enough
to support as a large variety of distributed content transfer algorithms as
possible. These can range from peer-to-peer video streaming to cloud-based
file backup services, among others, but should also be able to support not
yet foreseen situations in which describing these types of algorithms may be
useful. Furthermore, we would like to be able to automatically translate from
this formalism into other languages, not only for the purposes of modelling,
verification, and generation of executable code, but also in order to be able
to take advantage of the already existing tool support for these languages in
the context they are used. For these purposes we introduce the Specification
for Content Transfer Algorithms (SPECTA) language.

This report is organised as follows. In Section 2 we describe the SPECTA
language. Section 3 contains a few examples of algorithms and their represen-
tation in SPECTA. In Section 4 we describe our ideas for translation from
SPECTA to other languages, as well as an example of translation into Event-B.
Section 5 concerns related work. We conclude this article in Section 6 with
discussion about our results and possible future work.
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2 The SPECTA Language

To be able to transfer content out of order, we need an initial ordering of
the content, and a way of describing the order in which the content should
be transferred. Therefore, we assume that the content to be transferred is
partitioned into a finite number of pieces, enumerated sequentially by positive
integers. Content transfer algorithms should then, based on properties of the
pieces and of the system as a whole, step by step choose which piece to transfer
next, until there are no eligible pieces left. Not all pieces are necessarily
eligible at all times; for instance, while a backup solution may choose to
backup the same content more than once in order to store content at different
locations, a video streaming client usually does not need to transfer the same
content more than once and therefore only needs to consider the pieces not
already transferred. Deciding about eligibility of pieces is application-specific,
and may even change over time, and in the algorithms we therefore do not
specify which pieces are eligible.

When selecting the next piece to be transferred, we specify an overall
condition that models a state the system must be in for the selection to take
place at all, as well as criteria that describe the properties that an eligible
piece must satisfy in order to be selected (1). The condition is separated from
the criteria using a right triangle (.) symbol, and the criteria are separated
from each other using a pipe (|) symbol. The use of a pipe symbol between
criteria is due to its similar usage in UNIX-like command line environments,
where the output of what is on the left-hand side of the pipe is used as the
input for what is on the right-hand side. In SPECTA, the first criterion
specifies a subset of all eligible pieces, the second criterion specifies a subset of
the first subset, and so on. In the end, we are interested in no more than one
piece at a time, and therefore, if the subset consists of more than one piece
after the final criterion, we assume that one piece is non-deterministically
chosen from the remaining subset.

selection ≡ condition . criterion1

| criterion2

| . . .
| criterionm, where m ≥ 1

(1)

If the condition is not fulfilled, or the condition is fulfilled but there is
no eligible piece satisfying all criteria, no piece can be selected according
to (1). Therefore, we need a way of combining several selection mechanisms,
for which purpose we use the semicolon (2). If the first selection is possible, it
is used, but if not, the second one is tried, and so forth. Unlike the selection
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criteria in (1) there is no non-determinism involved if the final selection fails;
we simply assume that the algorithm is designed in such a way that the
correct behaviour is to do nothing until the conditions and criteria make it
possible to perform a selection.

next = selection1;

selection2;

. . . ;

selectionk, where k ≥ 1

(2)

To express the conditions and criteria, we can use simple arithmetic
operations, but we also need to define keywords and operations that can
be used together with them. An important subset of these can be found in
Table 1.

3 SPECTA Examples

With the keywords and operations of Table 1 in mind, we can give some
examples. For instance, it is possible to write an in-order transfer algorithm by
specifying that the piece with the lowest number should always be selected (3).
Obviously, this requires that each previously requested piece is no longer
eligible.

next = true . min(piece) (3)

In the piece selection method used in the original BitTorrent peer-to-peer
file sharing application [10], pieces are requested randomly until one complete
piece has been transferred, and after that pieces are selected rarest-first, i.e.,
starting from the ones with lowest availability. The behaviour when there
is more than one piece with the lowest availability is not specified [10], and
therefore we leave the choice non-deterministic if the set of pieces with the
lowest availability should contain more than one piece (4).

next = transferred < 1 . random(pieces);

transferred ≥ 1 . min(avail(piece))
(4)
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Main form Alternative form(s) Description

piece p The ID of the specific piece being
considered.

total all, last The total number of pieces. Also
the ID of the last piece, because
pieces are numbered from 1.

eligible elig The set of all eligible pieces, a sub-
set of all pieces.

pieces The subset of eligible pieces satis-
fying all criteria so far. For the
first criterion, this is the same as
eligible.

requested r, req The number of pieces that have
been requested.

transferred t, tr, transfered The number of pieces that have
been transferred. This number may
be smaller than requested when
transferring content in parallel.

availability(x) av(x), avail(x) The number of nodes that hold the
piece of content specified by the
parameter. If no parameter, piece
is assumed.

minimum(x) min(x) The piece (in pieces) for which the
parameter is the smallest.

maximum(x) max(x) The piece (in pieces) for which the
parameter is the largest.

random(x) random(x,y) If the parameter is a set of pieces,
returns a random piece from that
set. Otherwise gives a random num-
ber from 1 to x, or with two param-
eters, in the range from x to y.

probability(r) prob(r) Returns true with the probability
r, 0≤r≤1.

size(x) Returns the size of the piece speci-
fied by the parameter.

current c, cur The current piece in any external
use, e.g., playback position in me-
dia streaming.

Table 1: Keywords and operations

BiToS is a modification of BitTorrent to support streaming media [24].
This is done by partitioning the pieces into a high priority set, which consists
of pieces close to being played back, and a set of pieces with lower priority.
With a probability of 0.8 the rarest piece from the high priority set is chosen,
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otherwise the rarest piece from the low priority set is chosen. In both cases,
if there is more than one piece with the same availability, the piece with the
lowest piece number is chosen. The optimal size of the high probability set
was found to be 8% of the complete set of pieces [24]. With SPECTA we can
describe the BiToS algorithm as (5).

next = prob(0.8) . piece ≤ current + (0.08 ∗ total)
| min(avail(piece))

| min(piece);

true . piece > current + (0.08 ∗ total)
| min(avail(piece))

| min(piece)

(5)

In our previous work, we have introduced another piece selection method
for on-demand streaming media: the Distance-Availability Weighted method
(DAW) [19, 21, 20]. In this method, pieces from the current media playback
position up to a certain buffer size are requested sequentially. When the
buffer is filled, pieces falling outside the buffer are prioritised based on their
distance from the last piece in the buffer multiplied by their availability. Thus,
pieces with low availability and close to being needed for playback are chosen
before pieces that have high availability and are far from being played back.
As in (5), if there is more than one piece that would receive the same priority,
the piece with the lowest piece number is chosen. We can write the DAW
algorithm in SPECTA as (6). Obviously, for this to be correct the eligible
set would need to exclude any pieces with no availability, but in practice this
would be the case anyway, as there is no point in requesting pieces that are
unavailable.

next = true . piece ≤ current + buffersize

| min(piece);

true . min(avail(piece)

∗ (piece− (current + buffersize)))

| min(piece)

(6)

As another example, consider a distributed backup solution, in which each
piece of content should be distributed to three different nodes. Moreover, all
content should be available on n nodes before we start distributing it to n+ 1
nodes, and larger pieces of content should be transferred before smaller. This
can be described as (7).
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next = true . avail(piece) < 3

| min(avail(piece))

| max(size(piece))

(7)

4 Translation from SPECTA

As previously mentioned, one of the ideas behind a language like SPECTA is
to enable translation from a format easily understood by humans into a lan-
guage meant for machine interpretation. The latter could be a programming
language such as C or Java, depending on where the code is to be used. How-
ever, we have chosen to start by translating into Event-B [2], which is a formal
modelling language. The reason for doing this is two-fold. Firstly, Event-B has
excellent tool support in the form of the extensible Rodin Platform tool [13],
which supports a variety of plug-ins for things such as animation and model
checking [16] as well as code generation [17, 26]. Secondly, we have previously
worked with content transfer algorithms in Event-B [21], thus facilitating
easier comparison between automatically translated algorithms and those we
have already modelled with Event-B. In the following, we will first describe
Event-B and secondly present our approach to translation from SPECTA to
Event-B and show examples of translated algorithms.

4.1 The Event-B Language

The B-Method [1] is a formal approach to specifying and developing highly
dependable software, used successfully in development of several complex real-
life applications [13, 11]. From the B-Method and the Action Systems [5, 7, 25]
framework Event-B was derived for the purpose of modelling and reasoning
about parallel, distributed and reactive systems, and the previously mentioned
Rodin Platform [13, 3] was developed to offer tool support, which is an
important asset for facilitating widespread adoption.

In Event-B, a model of a system is made up of two parts: a machine,
usually referred to as the dynamic part of the model, and a context, seen as
the static part of a model. Technically, an Event-B context is optional in a
model, although in practice one is always included, as the context specifies
constants, carrier sets, and axioms about these to be used in the model. An
Event-B machine optionally sees a context, and holds the model state in
variables, which are updated by events. An event is an atomic set of variable
updates, happening simultaneously, and each event may also contain guards.
The guards of an event are associated predicates that must evaluate to true
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for the event to be able to execute, i.e., be enabled. If more than one event is
enabled simultaneously, the choice between the events is non-deterministic.
An Event-B machine should also include invariants, which are properties that
must hold for any reachable state of the model. Thus, the properties specified
by the invariants must hold before and after each occurrence of any event,
after having been established by the INITIALISATION event. To be able
to prove that this happens, the proof manager in the Rodin Platform [2, 13]
tool automatically generates what needs to be proved in order for an invariant
to hold.

Event-B provides a stepwise refinement-based approach to system develop-
ment, where correctness is preserved by gradually introducing new variables,
events and constants in a manner that does not disturb the previous function-
ality. Refinement starts from an abstract model, which describes what the
system should do, and with each refinement step the system becomes more con-
crete, describing how it should do what it was designed to do. Refinement can
be horizontal or vertical, where horizontal or superposition refinement [8, 15]
refers to adding new variables, events and constants in addition to existing
ones. Previous events can also be modified, typically such that they either
update the newly introduced variables or introduce more deterministic assign-
ments on the pre-existing variables, while also strengthening the event guards.
Vertical refinement, or data refinement [6], corresponds to replacing some
abstract variables with their concrete counterparts and accordingly changing
the events. In this article, we do not use refinement, but it must be noted
that our translation fits in somewhere between the most abstract model and
the most concrete one. For instance, the algorithms written in SPECTA will
give the number of the piece of content that should be requested for transfer,
which can be seen as a refinement of an abstract event specifying that the
“optimal” piece should be found. Likewise, in SPECTA we can specify the
minimum or maximum of something within a set, which, conveniently, is
a built-in function in Event-B, but a more concrete implementation would
specify how the minimum or maximum should be found. In the following, we
describe some of the other details that need to be considered when translating
SPECTA into Event-B.

4.2 Translating SPECTA to Event-B

As both SPECTA and Event-B code are, to a certain extent, text-based
formats, we decided to initially use a scripting language with good text
processing abilities for translation. Therefore, we chose to write our prototype
SPECTA to Event-B translator as a Perl script. We must stress the point
that we do not translate SPECTA into Event-B models, nor into Event-B
machines, but into Event-B code. Thus, the output of our translator cannot
be used in the Rodin Platform tool without adding variables and other events
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(in the machine) and relevant constants and axioms (in the context). This is
done deliberately, as simply translating does nothing except show that it is
possible to translate, and any practical use of the translated code in Event-B
models should include additions of invariants and other events in such a way
that there are real properties that should and could be proved.

When compared to SPECTA, Event-B has certain limitations. For in-
stance, there is no support for random numbers or probabilities. In the former
case we have opted to translate to the built-in non-determinism in Event-B,
and for the latter we have translated such that we have a Boolean variable
probability and an event that non-deterministically changes its value to true
or false. This is because both randomness and probabilities can be seen
as special cases of non-determinism; that is, anything we can prove about
something that is true in a random way or with a certain probability we
must be able to prove regardless of whether it is true or not. In other words,
we now abstract probabilities and randomness into non-determinism, and
assume that when or if Event-B can support these concepts natively we can
reintroduce them as refinements of this non-determinism. Another problem
we faced when translating is that Event-B currently only supports integer
numbers, while SPECTA can work with real numbers, although we assume
content pieces are numbered using integers. Together, these limitations mean
that few algorithms written in SPECTA could be successfully translated
completely without human intervention, although in most cases it will be
possible to rewrite the algorithms in such a way that they can be translated,
at least for the purpose of including them into a bigger model for the purpose
of proving.

The first approach we tried for translating SPECTA to Event-B was a
näıve implementation, in which each of the selections combined was translated
into a single event. Initially, the first event, corresponding to the first selection,
would be enabled, and the second event would be enabled if the first one
selection failed, and so forth. This worked well for simple algorithms, such as
ones consisting of only a few selections, each containing no more than two
criteria. However, for larger algorithms this approach became unmanageable.
The reason for this is as follows: in this implementation, each event had to
specify all the conditions under which it would be enabled, and because the
second event should only be enabled if the first one would not be able select
a piece, the second event needed as its guard all the possible ways the first
event could fail to select a piece. The third event would then only be enabled
if the second failed to select a piece, resulting in even more combinations of
conditions and criteria to include in the guards for the event. Thus, readability
could become severely compromised and proving anything about the final
model would also be more difficult. It was clear that we needed another
approach.

The second approach we tried involved splitting the events from the first
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approach into several ones. Instead of a single event for each selection, we had
multiple events based on the different ways the previous selection could fail to
select a piece. Thus, the first selection had one event, and the second selection
had one event enabled when the first selection was unsuccessful because of
the condition, and one additional event for each criteria that could cause the
first selection to be unsuccessful. The third selection would then increase the
number of events even further, based on the different combinations of how the
the two previous selections failed to select a piece in order to enable the third
selection. The large number of events did not only decrease the readability of
the generated Event-B code, but would also increase the time needed to prove
anything, as proving that an invariant holds needs to be done separately for
each event. Therefore, it soon became obvious that this approach was not
ideal either.

The third approach we tried, which is also the one we will describe here
and show an example of, is based on the fact that the second selection onwards
only need to know that the previous selections were unable to select a piece,
not the reason why they were unable to do so. We could then replace the
many events or complicated guards with a variable specifying which selection
we were considering at the moment, knowing that if we considered selection
method number two, selection method number one must for some reason have
been unable to select a piece. This relationship could even be defined formally
as an invariant stating that if we were considering the second selection, either
the condition for the first selection must have been unfulfilled, or there was
no eligible piece satisfying all criteria. In fact, this invariant must hold for all
selections after the first one, and a similar invariant could be made regarding
each selection method and made to hold for all subsequent ones.

A representation of program flow within the Event-B events created from
SPECTA code can be seen in Figure 1. For each selection, we have two
events representing whether the condition is fulfilled or not (for instance,
SP SELECT 0 and SP SELECT 0 NEG). To facilitate the use of multi-
ple criteria in one selection, we also create a separate event for each criteria
within each selection (SP SELECT 0 0, SP SELECT 0 1, . . . ). Each
of these events defines pieces to be a new subset of the previous pieces,
exactly as described in Section 2, but we also add one final event that,
if pieces is non-empty, non-deterministically selects a piece from that set
(SP SELECT 0 COMPLETE). If the set pieces is empty at any time,
meaning that one of the criteria is such that no eligible piece fulfills that
one and all the previous ones, we reset the set pieces to contain all eli-
gible pieces (in SP SELECT EMPTY), and move to the next selection.
Likewise, if the final selection is not successful in selecting a piece, the event
SP SELECT FAILED sets pieces to all eligible pieces and lets the program
flow within the SPECTA-created events return to the idle state.

As mentioned previously, the events generated from SPECTA code do
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SP_SELECT_0) SP_SELECT_1)

SP_SELECT_1_NEG)

SP_SELECT_FAILED)

SP_SELECT_0_0) SP_SELECT_1_0)

SP_SELECT_0_1) SP_SELECT_1_1)

SP_SELECT_0_2) SP_SELECT_1_2)

SP_SELECT_0_COMPLETE) SP_SELECT_1_COMPLETE)

SP_SELECT_EMPTY)

SP_SELECT_0_NEG)

SP_SELECT_EMPTY)

IDLE)STATE)

Figure 1: A representation of program flow within Event-B events created
from SPECTA code, consisting of two selection methods each containing
three criteria.

not constitute a complete model. For instance, we assume that the set of
all pieces is constant, and therefore the number of pieces is also constant,
and thus we can add these as constants in the context of our Event-B model.
Likewise, pieces, eligible, availability and next are used by the events but not
constant, and therefore we add them as variables to the Event-B machine
and initialise them in the INITIALISATION event. We also have variables
that model the program flow: selection method describes which selection we
are considering at the moment, roughly corresponding to the first digit or
horizontal movement in Figure 1; selection step describes which criterion we
are looking at, roughly corresponding to the second digit or vertical movement
in Figure 1; and selection inprogress is a Boolean value representing whether
we are doing piece selection, that is, whether we are outside the idle state
in Figure 1 or not. The latter of these is done mainly to facilitate easier
integration with events not generated from SPECTA code; if we need to prove
anything about what happens in the piece selection events we need a way for
other events updating variables such as eligible or availability to be prevented
from doing so while piece selection is underway.

Because of space considerations, we will limit us to showing one example
of SPECTA translated to Event-B events. The piece selection algorithm
we show translated is DAW (6), previously presented in SPECTA form in
Section 3. The first two events generated are shown in Figure 2. Already at
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this stage there are two things to note. Firstly, Event-B differentiates between
the logical true (>) and the Boolean value true (TRUE), and thus we use
the first in the guards translated from SPECTA but the second as a value
that a variable can be set to. Secondly, in this example the condition is >
and therefore the event requiring the negation as guard is superfluous since
¬(>) can never be true, although for the sake of completeness the event is
still generated and we show it here.

event SP SELECT 0
where
@grd1 >
@grd2 selection method = 0
@grd3 selection step = 0
@grd4 selection inprogress = FALSE

then
@act1 selection step := 1
@act2 selection inprogress := TRUE

end

event SP SELECT 0 NEG
where
@grd1 ¬(>)
@grd2 selection method = 0
@grd3 selection step = 0
@grd4 selection inprogress = FALSE

then
@act1 selection method := 1
@act2 selection step := 0
@act3 selection inprogress := TRUE

end

Figure 2: Events corresponding to the condition of the first selection and its
negation.

In Figure 3 we show the events corresponding to the criteria of the first
selection, i.e., we first limit pieces to the pieces from current to current +
buffersize (SP SELECT 0 0), then we choose the piece from that set with
the smallest piece number (SP SELECT 0 1) and finally we choose one
piece from the remaining subset (SP SELECT 0 COMPLETE).

Figure 4 shows the event corresponding to the condition of the second
selection, and as in Figure 2 we also have an unnecessary event which is only
enabled when ¬(>) is true, i.e., never. However, we must point out that the
reason this event can never be enabled here is because of the special situation
that true is the condition for this selection method.

In Figure 5 we show the events generated based on the criteria of the
second selection. As previously, the first guard of each event is the one that
corresponds to the actual criteria, and here we note that SP SELECT 1 0
is quite complicated. Translation of a particular condition or criterion is done
by using a separate file containing SPECTA statements used in conditions
and criteria, and their equivalents in Event-B.
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event SP SELECT 0 0
any newpieces
where
@grd1 newpieces = { piece | piece ∈ pieces ∧ piece < current + buffersize }
@grd2 selection method = 0
@grd3 selection step = 1
@grd4 selection inprogress = TRUE
@grd5 pieces 6= ∅

then
@act1 pieces := newpieces
@act2 selection step := 2

end

event SP SELECT 0 1
any newpieces
where
@grd1 newpieces = { piece | piece ∈ pieces ∧ piece = min(pieces) }
@grd2 selection method = 0
@grd3 selection step = 2
@grd4 selection inprogress = TRUE
@grd5 pieces 6= ∅

then
@act1 pieces := newpieces
@act2 selection step := 3

end

event SP SELECT 0 COMPLETE
where
@grd1 selection method = 0
@grd2 selection step = 3
@grd3 selection inprogress = TRUE
@grd4 pieces 6= ∅

then
@act1 next :∈ pieces
@act2 selection step := 0
@act3 selection method := 0
@act4 selection inprogress := FALSE

end

Figure 3: Events corresponding to the criteria of the first selection.

We note that even though the two events named SP SELECT 0 -
COMPLETE and SP SELECT 1 COMPLETE, in Figures 3 and 5,
respectively, appear to do the same thing, they could not be universally
replaced by a single event. This is because in this particular case, both the
first and second selection contain the same amount of criteria, which is not
always the case. However, in Figure 6 one event that can be reached from
any selection is shown (SP SELECT EMPTY). This event advances piece
selection to the next method in the algorithm whenever criteria have made
pieces an empty set. Figure 6 also shows the event that becomes enabled
after the last piece selection method has failed (SP SELECT FAILED).
In this event, pieces is set back to all eligible pieces and we indicate that
piece selection is no longer in progress, thus creating a situation in which
the variables that the piece selection methods depend on may be affected by
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event SP SELECT 1
where
@grd1 >
@grd2 selection method = 1
@grd3 selection step = 0
@grd4 selection inprogress = TRUE

then
@act1 selection step := 1

end

event SP SELECT 1 NEG
where
@grd1 ¬(>)
@grd2 selection method = 1
@grd3 selection step = 0
@grd4 selection inprogress = TRUE

then
@act1 selection method := 2
@act2 selection step := 0

end

Figure 4: Events corresponding to the condition of the second selection and
its negation.

other events and thereby creating a situation in which next attempt at piece
selection may be successful.

When putting this together with the mentioned variables, invariant speci-
fying types of and relations between these, as well as an INITIALISATION
event in the machine, and a context containing relevant constants and axioms
about those, we created a complete and correct Event-B model that could
be expanded upon, for instance by adding the properties we would want to
prove and which would cause us to choose a formal modelling environment
for development. We also acreated similar model for the BitTorrent piece
selection algorithm (4), and all the proof obligations generated, for both the
DAW and the BitTorrent models, were automatically discharged by the Rodin
Platform tool.

4.3 Comparison

We have previously modelled a few different piece selection algorithms using
Event-B [21, 22]. Therefore, we are able to compare the Event-B code that
we created as a part of working with Event-B to the code now generated
from SPECTA using our simple translator. One substantial difference is that
in our previous work, we built a model of a distributed media streaming
solution from the ground up, and there we introduced early on an event
always selecting the most prioritised piece. In case of more than one piece
with the same priority, the piece with the lowest piece number is selected,
which is common to several piece selection algorithms for streaming media,
such as (5) and (6), and has no effect in others, such as (3). Only in the final
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event SP SELECT 1 0
any newpieces
where
@grd1 newpieces = { piece | piece ∈ pieces ∧

(∀s · s ∈ pieces ∧ s 6= piece ⇒
(availability(s) ∗ (s − (current + buffersize)) ≥
(availability(piece) ∗ (piece − (current + buffersize))))) }

@grd2 selection method = 1
@grd3 selection step = 1
@grd4 selection inprogress = TRUE
@grd5 pieces 6= ∅

then
@act1 pieces := newpieces
@act2 selection step := 2

end

event SP SELECT 1 1
any newpieces
where
@grd1 newpieces = { piece | piece ∈ pieces ∧ piece = min(pieces) }
@grd2 selection method = 1
@grd3 selection step = 2
@grd4 selection inprogress = TRUE
@grd5 pieces 6= ∅

then
@act1 pieces := newpieces
@act2 selection step := 3

end

event SP SELECT 1 COMPLETE
where
@grd1 selection method = 1
@grd2 selection step = 3
@grd3 selection inprogress = TRUE
@grd4 pieces 6= ∅

then
@act1 next :∈ pieces
@act2 selection step := 0
@act3 selection method := 0
@act4 selection inprogress := FALSE

end

Figure 5: Events corresponding to the criteria of the second selection.

refinement step we specified how the priorities would actually be calculated,
such that we have separate events for different selection methods combined;
for instance, in the case of DAW (6) we had one event setting the priority
in the buffer and another event setting the priority outside the buffer. This
way of working had the effect that when working with an in-order selection
algorithm, each piece would always get the same priority in every iteration of
the priority calculation, because in such a case priorities do not depend on
any external information that could change.

In contrast to our previous work, the events generated by translation
from SPECTA are not optimised for any particular case, and thus would be
possible to use even with algorithms where calculating a numeric priority for
each piece is not possible. Also, the way we translate from SPECTA makes
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event SP SELECT EMPTY
where
@grd1 selection inprogress = TRUE
@grd2 pieces = ∅

then
@act1 pieces := eligible
@act2 selection step := 0
@act3 selection method := selection method + 1

end

event SP SELECT FAILED
where
@grd1 selection inprogress = TRUE
@grd2 selection method = 2

then
@act1 pieces := eligible
@act2 selection step := 0
@act3 selection method := 0
@act4 selection inprogress := FALSE

end

Figure 6: Events corresponding to some criteria not being able to select a
piece and the whole algorithm not being able to select a piece.

it possible to use content transfer algorithms with large numbers of criteria
for each selection method, and unlike our previous work we could also here
utilise algorithms other than ones explicitly made for transfer of streaming
media content.

5 Related Work

There has been a lot of work describing content transfer algorithms [10, 19,
20, 24], but not as much about the way these can be formally described. As
mentioned in Section 1, pseudocode is not standardised, but there have been
attempts at doing so [12]. There are also programming languages whose
syntax is similar to pseudocode in that it is easily understood as a natural
language, creating a situation where writing it requires learning a specific
syntax but understanding existing code does not require specific knowledge
about the syntax. One such language is AppleScript [4]. However, more
relevant to the problem we have looked at is how to formally specify a
domain-specific pseudocode [9]. More generally, we note that SPECTA is a
domain-specific language, of which there are many [14]. Another related field
is programming by construction [18], in which concepts can be specified in a
manner not specific to any particular programming language, and then later
used to generate code in specific programming languages.
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6 Conclusion

In this paper we have introduced SPECTA, a language for specifying content
transfer algorithms in an easily understandable manner. We have also shown
how algorithms written this language can be translated into Event-B [2] as a
starting point for analysis, verification, or further formal development. Based
on our previous work, we have compared the formal model generated with
converted SPECTA code to one developed separately, and noted the increased
flexibility that comes with a generic automatic translation compared to that
which created for a specific purpose.

Future work could include extending our language to support more in-
formation about other nodes, such as latency, transfer speed, and uptime.
This would enable not only more advanced methods of selecting what piece
of content to transfer, but also specifying which nodes should be involved.
We also intend to rework our simple SPECTA to Event-B translator into a
full-fledged plugin for the Rodin Platform [13] tool, in order to ease integration
into the formal modelling workflow.
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