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Abstract 

This paper assesses the suitability of data and dimension reduction methods, and data-
dimension reduction (DDR) combinations, for visual financial performance analysis. 
Motivated by no comparable quantitative measure of all aspects of dimension 
reductions, this paper attempts to capture the suitability of methods for the task through 
a qualitative comparison and illustrative experiments. While the discussion deals with 
differences of DDR combinations in terms of their properties, the experiments illustrate 
their general applicability for financial performance analysis. The main conclusion is 
that topology-preserving DDR combinations with predefined grid shapes, such as the 
Self-Organizing Map, are ideal tools for this task. We illustrate advantages of these 
types of methods with a visual financial performance analysis of large European banks. 

 

Keywords: financial performance analysis; visualization; data reduction; dimension 
reduction 
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1. Introduction 
The ongoing global financial crisis and European debt crisis has highlighted the importance of a 
thorough understanding of financial entities, be they economies, markets or institutions. 
Fortunately, rapid advances in information technology have enabled access to huge databases of 
financial information. Unfortunately, analyzing these data is not completely unproblematic. 
Except for incompleteness of data due to missing values and comparability issues due to 
reporting differences (e.g. Nobes, 2006), as well as outliers and skewed distributions (e.g. 
Deakin, 1976), the multidimensionality of the problem is a central challenge for comprehension. 
In the case of firm-level financial entities, performance can be measured along several 
subdimensions, such as asset and management quality, as well as capital adequacy, earnings 
performance and liquidity ratios. Factors that further complicate the assessment of these high-
dimensional and big data are temporal and cross-sectional dependencies and relations. 
Generally, performance analysis of banks can be attempted with various aims, such as studies 
on determinants of entity performance (e.g. Zopounidis et al., 1995), predictions of undesired 
entity-level events (e.g. Demyanyk and Hasan, 2010) and efficiency measurement of entities 
(e.g. Halkos and Salamouris, 2004). While a wide range of methods have been applied to fulfill 
these aims, they seldom focus on providing the end-user with representations of data in easily 
understandable formats. A visualization or abstraction of high-dimensional data supports the 
knowledge crystallization process by enabling utilization of the pattern recognition capabilities 
of the human brain for exploring enormous databases. 

Data and dimension reduction techniques, and their combination for data-dimension reduction 
(DDR), obviously hold some promise for representing data in an easily understandable format. 
Data reductions provide overviews of data by compressing information, whereas dimension 
reductions provide low-dimensional overviews of similarity relations in data. While the quality 
of data reductions can be quantified by common evaluation measures like quantization error, 
assessing the superiority of one dimension reduction method over others with a quantitative 
measure is more difficult. Since the mid-20th century, the overload of available data has 
stimulated a soar in the development of dimension reduction methods with inherent differences. 
Most of the methods fall into those aiming at distance and topology preservation (for an 
overview, see Section 2 and Lee and Verleysen, 2007). The distance-preserving methods have 
their basis in those preserving spatial distances in the data set (e.g. the family of 
Multidimensional scaling (MDS) methods), while topology-preserving methods have their basis 
in those preserving neighborhood relations in the data set (e.g. Self-Organizing Map (SOM) 
(Kohonen, 1982)). However, most differences in the quality of dimension reductions, as all 
structural information can impossibly be preserved in a lower dimension, derive from variations 
in preserved similarity relations (i.e. objective function), such as pairwise distances or 
topological relationships. The performance, and choice of model specification, of one method 
can generally be motivated by its own quantitative quality measure. However, the relative 
goodness of different methods depends strongly on the correspondence between the particular 
measure and the objective function. 
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The large number of dimension reduction methods has obviously stimulated quality 
comparisons along different measures. However, despite many attempts, inconsistency of the 
comparisons has lead to no unanimity on the superiority of one method (e.g. Flexer, 1997; 2001; 
Venna and Kaski, 2001). This also verifies that the goodness of methods depends to a large 
extent on the correspondence between the measure and the objective function, and confirms that 
the quality measure is a user-specified parameter depending on the task at hand. While recent 
advances in unified measures for evaluating dimension reductions have included a parameter for 
the user to specify properties that are more important to be preserved (Lee and Verleysen, 2009; 
Lueks et al., 2011), quantitative measures still have difficulties in including qualitative 
differences in properties of methods, such as differences in flexibility for difficult data and the 
shape of the low-dimensional output. This motivates assessing the suitability of data and 
dimension reduction methods for a specific task from a qualitative perspective. 

The main aim of this paper is to capture the most suitable methods for visual financial 
performance analysis according to the needs for the task. To date, the most popular method for 
the task has been the SOM, which is oftentimes asserted as an artifact of its simplicity and 
intuitive formulation (e.g. Trosset, 2008; Lee and Verleysen, 2007). Yet, being well-known or 
simple, while being an asset, is not a proper validation of relative goodness. Hence, we assess 
the suitability of three classical, or so-called first-generation, dimension reduction methods for 
financial performance analysis: metric MDS (Torgerson, 1952), Sammon’s (1969) mapping and 
the SOM. Rather than being the most recent methods, the rationale for comparing these methods 
is to capture the suitability of well-known dimension reduction methods with inherently 
different aims: global and local distance preservation and topology preservation. For DDR, we 
test serial and parallel combinations of the projections with three data reduction or compression 
methods: vector quantization (VQ) (Linde et al., 1980), k-means clustering (MacQueen, 1967) 
and Ward’s (1963) hierarchical clustering. The relative goodness of methods for financial 
performance analysis will first be discussed from a qualitative perspective, in particular with 
respect to the needs for this task. That is, building low-dimensional mappings from high-
dimensional and big data that function as displays for additional information, be it individual 
data (e.g. time series of entities) or general structural properties of data (e.g. distance structures 
and densities). Specifically, we pinpoint this into four key issues: form of structure preservation, 
computational cost, flexibility for problematic data and shape of the output. Then, experiments 
on a dataset of annual financial ratios for European banks will be used to illustrate the general 
applicability of the DDR combinations for the task. Results of these comparisons are then 
projected to the second generation of dimension reduction methods for a final discussion on the 
superiority of methods for visual financial performance analysis. 

The paper is structured as follows. In Section 2, we review the literature related to financial 
performance analysis and data and dimension reduction. While Section 3 briefly introduces the 
data and dimension reduction methods used in this paper, Section 4 discusses optimal DDR 
combinations for financial performance analysis and disentangles the needs and aims into 
concrete properties for measuring suitability. Section 5 compares data and dimension reduction 
methods for financial performance analysis by a qualitative discussion, presents the financial 
dataset and pre-processing framework and shows some illustrative experiments. Section 6 
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discusses critically the results and draws parallels with the second-generation of dimension 
reduction methods. Finally, Section 7 concludes by presenting key findings and suggestions for 
future work. 

2. Related literature 
This section reviews related literature from three distinct directions. We discuss the literature 
related to measuring financial performance of banks, we present a brief taxonomy of data and 
dimension reduction methods as well as a review of data reduction methods, and finally discuss 
comparisons of data and dimension reductions. 

2.1. Financial performance analysis of banks 
Measuring performance of banks is a common task and has been performed with a wide variety 
of methods and aims. Depending on the definition of "performance", different methods have 
been applied for assessing and measuring characteristics of banks. The complexity is further 
increased as one may also be interested in properties of entities across cross-sections and their 
evolution over time. We approach the literature from three directions. Thereafter, we give an 
outlook on visualizing bank-related data. 

First, there is a broad literature on determinants of bank performance. These types of studies 
have mostly utilized high-dimensional data and conventional statistical techniques (e.g. Fraser 
et al., 1974; Zopounidis et al., 1995). Second, a large number of studies have created early 
warning models in attempts to predict future distress in bank performance of two forms: 
country-specific banking crises (e.g. Demirguc-Kunt and Detragiache, 2000) and bank-specific 
bank distress (e.g. González-Hermosillo, 1999; Männasoo and Mayes, 2009). Recently, some 
advances in predictive capabilities have been gained through non-parametric methods 
(Demyanyk and Hasan, 2010). Third, there is a field on its own on measuring the efficiency of 
individual banks. This has most commonly been performed with data envelopment analysis 
(Halkos and Salamouris, 2004), fuzzy set theory (Seçme et al., 2009) and grey relation analysis 
(Kung and Wen, 2007). Even though there is no one method that is suited for every purpose and 
situation, the above methods do not even propose to be applicable for visual performance 
analysis. 

Visualization of bank-related data concerns a wide range of approaches, such as network models 
for illustrating interconnectedness, extended plots for assessing raw data or their summaries and 
analytical methods. Following the proposition by  Aigner et al. (2008) on a better integration of 
visual, analytical and user-centered methods, the focus herein is on visualization through 
analytical methods for data and dimension reduction. Dimension reduction methods, while not 
being highly common for visualization in financial analysis, have previously been employed for 
visual financial performance analysis. MDS and the SOM have been applied in illustrating the 
performance of banks on a low-dimensional display: MDS was used for illustrating the 
performance of Spanish banks (Ezzamel and Mar-Molinero, 1987) and the SOM was used for 
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mapping close to European banks (Sarlin and Eklund, 2011). In addition, while there exist 
applications of both MDS (Mar-Molinero and Serrano-Cinca, 2001) and the SOM (e.g. Martín-
del-Brío and Serrano-Cinca, 1993) for predicting failures of banks, the SOM has remained its 
popularity not only in the domain of bank analysis, but also in other financial areas.1 

2.2. Data and dimension reduction methods 
As the focus of this paper lies on dimension reductions, and data reductions are mainly used for 
enhancing the interpretation of dimension reductions, the focus of this review also lies on 
dimension reductions. The first dimension reduction methods date back to the early 20th 
century. However, only since the 1990s has there been a significant soar in the number of 
developed dimension reduction methods. We use that as a cutting point for dividing the methods 
into first and second-generation methods. 

The first generation consists of the well-known classical methods that are still broadly used and 
accepted in a wide range of domains. Drawing upon the first introduced, but still commonly 
used, variance-preserving principal component analysis (PCA) (Pearson, 1901), an entire family 
of distance-preserving MDS-based methods have been developed. The MDS counterpart to 
PCA, classical metric MDS, that attempts to preserve pairwise distances was proposed by 
Young and Householder (1938) and Torgerson (1952). Non-linear versions are the first 
introduced non-metric MDS by Shepard (1962) and Kruskal (1964) and the later developed 
Sammon's (1969) mapping. The topology-preserving family of methods was launched through 
the introduction of the SOM (Kohonen, 1982). The SOM differs by reducing both dimensions 
and data through a neighborhood-preserving vector quantification. The second generation is a 
less homogeneous group of methods ranging from spectral techniques to graph embedding. A 
soar in developed methods at the turn of the century lead to several innovative techniques, such 
as Curvilinear Component Analysis (CCA) and Curvilinear Distance Analysis (CDA) 
(Demartines and Hérault, 1997), Generative Topographic Mapping (GTM) (Bishop et al., 
1998a), Locally Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaum et al., 
2000), Laplacian Eigenmaps (LE) (Belkin and Niyogi, 2001) and Maximum Variance 
Unfolding (MVU) (Weinberger and Saul, 2005). Some more recent methods are, for instance, t-
distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008) and 
Exploration Observation Machine (XOM) (Wismüller, 2009). 

In addition to two generations, dimension reduction methods can also be illustrated in a tree-
structured taxonomy. The tree-structure in Figure 1 is a non-exhaustive taxonomy of dimension 
reduction methods based upon that in Lee and Verleysen (2007, p. 234). While the focus herein 
is on methods based upon geometrical concepts, there exists also other methods, such as those 
based upon auto-associative neural networks (AANNs). The tree structure ends with some 
exemplifying methods, where first-generation methods are differentiated from second-
generation methods through a grey background. Methods can roughly be divided into those 

                                       
 
1 The SOM has been popular for financial benchmarking and performance analysis in other financial domains as well. 

Some examples of financial application areas are the pulp and paper industry (Back et al. 1998; Eklund et al., 
2004) and macro-financial surveillance (Sarlin and Peltonen, 2011) 



 

5 

aiming at distance and topology preservation. The distance-preserving methods can still be 
divided into different distances, such as spatial (e.g. PCA, MDS, Sammon's mapping and CCA), 
graph (e.g. Isomap and CDA) and other (e.g. MVU). Topology-preserving methods can be 
divided into those with a pre-defined grid shape (e.g. SOM, GTM and XOM) and those without 
(e.g. LLE, LE and t-SNE).  
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Notes: The figure represents a non-exhaustive taxonomy of dimension reduction methods adapted from Lee and Verleysen (2007). 
The lowest level associates methods to their families, where a gray background indicates first-generation methods and white second 
generation. Acronyms: Auto-Associative Neural Network (AANN), Principal Component Analysis (PCA), Multidimensional 
Scaling (MDS), Curvilinear Component Analysis (CCA), Curvilinear Distance Analysis (CDA), Maximum Variance Unfolding 
(MVU), Self-Organizing Map (SOM), Generative Topographic Mapping (GTM), Exploration Observation Machine (XOM), 
Locally Linear Embedding (LLE), Laplacian Eigenmaps (LE) and  t-distributed Stochastic Neighbor Embedding (t-SNE). 

Figure 1. A taxonomy of dimension reduction methods 

Although there is no common taxonomy of data reduction methods, several properties can be 
used for differentiating between methods: soft vs. hard clustering, hierarchical vs. non-
hierarchical methods and monothetic vs. polythetic goals, for instance. While soft clustering 
reduces data by assigning them to each cluster to a certain degree, hard clustering either assigns 
data to a cluster or not. Hierarchical methods (e.g. Ward's method (Ward, 1963)) produce a 
taxonomy of cluster structures, in which small child clusters are also nested within larger parent 
clusters, and may be divided into agglomerative (bottom-up) and divisive (top-down) 
approaches. Non-hierarchical methods approach data reduction from numerous different angles, 
and may roughly be divided into centroid-based (e.g. k-means (MacQueen, 1967) and Vector 
Quantization (Linde et al., 1980)), distribution-based (e.g. Expectation-maximization algorithm 
(Dempster et al., 1977)) and density-based clustering (e.g. DBSCAN (Ester et al., 1996)). The 
differences between monothetic vs. polythetic methods relate mainly to hierarchical clustering, 
where the former uses the inputs one by one and the latter all the inputs at once. 

2.3. Comparisons of data and dimension reductions 
When reviewing the literature on method comparisons, we first focus on dimension reduction 
methods and then on data reduction methods. The focus is on neutral evaluations of methods 
rather than evaluations in papers presenting novel methods. While papers presenting novel 
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methods generally include an evaluation and conclude at least partial superiority of the invented 
method, such as some of those found in Section 2.2, they may be  biased to a lesser or greater 
extent towards data and evaluation measures suitable for that particular method. 

The large number of methods has obviously also stimulated a large number of performance 
comparisons between them. The comparisons mainly vary in terms of used data and evaluation 
measures, whereas there may be some variation in the precise utilization of methods. For 
instance, Flexer (1997, 2001) used Pearson correlation, Duch and Naud (1996) hypercubes in 3-
5 dimensions and Bezdek and Pal (1995) the metric topology preserving index to show that 
MDS outperforms the SOM. Trosset (2008) argues that a serial combination of clustering and 
MDS is superior to the SOM. Venna and Kaski (2001) and Nikkilä et al. (2002) show 
superiority of the SOM and GTM in terms of trustworthiness of neighborhood relationships, 
while later Himberg (2004) and Venna and Kaski (2007) show superiority of CCA in terms of 
the same measure. Not surprisingly, de Vel et al. (1996) show, using Procruses analysis and 
Spearman rank correlation coefficients on various datasets, that the superiority of a method 
depends on the used evaluation measures and data. Lately, Lee and Verleysen (2009) proposed a 
unified measure based upon a co-ranking matrix for evaluating dimension reductions, a good 
starting point for generic evaluations. Lueks et al. (2011) further developed the measure by 
letting the user specify the properties that are more important to be preserved. While being 
useful aids in comparing methods, they neither show nor propose existence of one superior 
method for every type of data and preferences of similarity preservation. Hence, despite many 
attempts, inconsistent comparisons result in no conclusion on the superiority of one method. 

When reviewing the literature on methods for data reduction, one can easily observe that neither 
there is a unanimity on the best available method. Herein, the focus is on comparisons between 
methods performing DDR and stand-alone data reduction methods. Bação et al. (2005) show 
that the SOM outperforms k-means clustering with 3 evaluation measures and 4 datasets. Flexer 
(1997; 2001) show that k-means clustering outperforms the SOM using a Rand index and 36 
datasets. Waller et al. (1998) show on 2580 datasets that the SOM performs equally well with k-
means clustering and better than other methods. Balakrishnan et al. (1994) show that k-means 
outperforms the SOM on 108 datasets, but do not decrease the SOM neighborhood to zero at the 
end of learning (as e.g. Kohonen (2001) proposes). Vesanto and Alhoniemi (2000) showed on 3 
datasets that two-level clustering of the SOM is equally accurate as agglomerative and partitive 
methods, while obviously being computationally cheaper and having merits in visualizing 
relations in data. Ultsch and Vetter (1994) compare the SOM with hierarchical and k-means 
clustering and concludes that the SOM not only provides an equally accurate result, but also an 
easily interpretable output. Despite no unanimity on superiority, the literature still indicates that 
the SOM, and its adaptations, are equally considerable alternatives for data reduction as other 
methods, such as centroid-based and hierarchical clustering. 
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3. Methodology 
The dimension reduction methods used in this paper are chosen to span different structure 
preservation objectives. In this section, we introduce three dimension reduction methods: metric 
MDS, Sammon’s mapping and the SOM. The methods for data reduction are, on the other hand, 
chosen as to their resemblance to the clustering of the SOM and their suitability for data 
compression of dimension reductions. Again, we focus on three methods: VQ, k-means 
clustering and Ward’s hierarchical clustering. VQ and k-means resembles the functioning of the 
prototype-based clustering of the SOM. Agglomeration of hierarchical clustering, while 
differing from the data compression of VQ, is suitable for DDR as it can be restricted by 
neighborhood relations of a dimension reduction and adapted to account for cluster size. This 
section sets a starting point for the comparative discussion by introducing the methods with an 
emphasis on their objective functions. In the sequel, if not otherwise mentioned, all distances 
are treated as Euclidean. 

3.1. Dimension Reduction Methods 
Dimension reductions employed in this paper have their basis in the first-generation methods. 
The main basis of classical methods is in the family of MDS-based projections. We first turn to 
a distance-preserving counterpart of PCA, classical metric MDS (Young and Householder, 
1938; Torgerson, 1952). Due to its linearity constraints, we also turn to a non-linear MDS-based 

method, Sammon's (1969) mapping. That is, the aim is to project high-dimensional data jx  to a 

two-dimensional data vector jy  by preserving distances. Let the distance in the input space 

between jx  and hx  be denoted ),( hjd x  and the distance in the output space between jy  and 

hy  be denoted ),( hjd y . This gives us the objective function of metric MDS: 
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Sammon’s mapping is an MDS method in that it also attempts to preserve pairwise distances 
between data but differs by focusing on local distances relative to larger ones. The square-error 
objective function for Sammon’s mapping is 
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and shows that it considers all pairs (j,h) normalized with the distance in the original space 

),( hjdx  and weighted with ),(1 hjd x . The objective functions of MDS-based methods are 

optimized with an iterative steepest-descent process. 

The SOM (Kohonen, 1982) differs by reducing both dimensions and data through a 
neighborhood-preserving VQ. In particular, the sequential SOM can be seen as a spatially 
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constrained form of VQ. We follow, however, the batch SOM algorithm that can instead be 
seen as a spatially constrained counterpart of k-means clustering. The training algorithm 
proceeds according to two steps: (1) finding the best-matching units (BMUs) and (2) adjusting 

the prototype vectors im . To find )),((min ijdx , the first step assigns the input data xj (where 

j=1,2,…,N) to their BMU ib mm   (where i=1,2,…,M). Hence, data jx  are projected to an 

equidimensional prototype vector im , not a two-dimensional vector as in MDS. The second 

step adjusts each mi with the batch updating algorithm: 
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where t is a discrete time coordinate and the neighborhood )( jibh  often some decreasing 

function of neighborhood radii and time. 

Mathematical treatment of the SOM has, however, shown to be difficult. Despite an extensive 
discussion of the form and existence of an objective function, the literature has still not provided 
one for the general case (Yin, 2008). It is, however, clear that a decomposed distortion measure 
illustrates the learning of the SOM (a discrete form with a fixed neighborhood of that suggested 
in Oja and Lampinen (1992)): 
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3.2. Data Reduction Methods 
Data reduction and compression, or clustering, methods can be used for dividing data or 
prototypes into homogeneous groups. First, we introduce two clustering counterparts of the 
SOM. The sequential and batch SOMs can be seen as spatial counterparts of two prototype-
based clustering methods: VQ (Linde et al., 1980) and k-means clustering (MacQueen, 1967), 
respectively. VQ attempts to model the probability density functions in data xj by prototype 

vectors mi. As the SOM, it uses )),((min ijdx  for finding the BMU for xj, but then updates 

only the BMU towards the data vector. Hence, it attempts to minimize the standard squared 
error function, or quantization error: 

.),( 
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K-means  is a similar least-square partitioning algorithm that pairs each data xj to a cluster k 

(where k=1,2,...C) and then updates the centroids kc  to averages of all attracted data. That said, 

the aim is again to minimize the squared error function: 

.),( 
1 1
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 The third type of data reduction is hierarchical clustering. The following Ward’s (1963) 
criterion is used as a basis for agglomerating clusters with the shortest distance: 
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where k and l represent clusters, kn  and ln  the cardinality of clusters k and l, and 

2

lk cc   the 

squared Euclidean distance between the cluster centers of clusters k and l. When clusters k and l 

are merged to cluster h, the cardinality hn  is the sum of kn  and ln  and the centroid hc  the 

mean of kc   and lc  weighted by kn  and ln . Hence, this specification accounts for cluster size. 

A particularly advantageous feature of hierarchical methods is that agglomeration can be 
restricted to some specific property of the underlying similarity relations between clusters. For 
instance, the distance between non-adjacent clusters can be set to infinite, where adjacency 
needs to be defined. Again, clusters can be said to agglomerate as to minimize the Euclidean 
distance to the centroids, or the squared error function. 

4. DDR Combinations for the Task at Hand 
This section discusses specific aims, needs and restrictions of DDR combinations for visual 
financial performance analysis. From this discussion, we pinpoint dimensions of DDR 
combinations relevant for measuring suitability of methods for the task at hand. 

4.1. Aims and Needs for the Task 
The aim of models for visual financial performance analysis is to represent high-dimensional 
and big data of financial entities in easily understandable formats. Data and dimension 
reductions hold promise for the task, but the aim of the models still set some specific needs and 
restrictions. While recent advances in information technology have enabled access to databases 
with nearly endless amounts of financial information (e.g. Bankscope, Bloomberg, Standard & 
Poor's Capital IQ, etc), financial data are oftentimes problematic in being incomplete and non-
normal (e.g. Deakin, 1976). For instance, in the case of representing a financial entity with its 
balance-sheet information, it is more common than not that some items of the balance sheet are 
missing. An example of skewed distributions is the commonly appearing power-law distribution 
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or its variants. This derives to two necessities: the computational cost of the method needs to be 
considerably low and scalable and the method needs to be flexible for problematic data. 

The main aim of the low-dimensional mappings is to use them as displays for additional 
information, in particular (a) individual data, (b) structural properties of data and (c) qualities of 
the models. This is due to three respective reasons: (a) the two-dimensional plane should 
function as a basis or display for visual performance comparisons of financial institutions (i.e. 
individual data); (b) for the human brain to recognize patterns in data, we need to provide 
guidance for interpreting general data structures, and oftentimes possess other linkable 
information as well; and (c) qualities of a dimension reduction may vary across mappings and 
locations in mappings as all information cannot be preserved in a lower dimension. The main 
aim of these mappings is hence not to be an end, but rather to function as a basis for a wide 
range of visualizations. 

4.2. Aims and Needs of DDR Combinations 
When evaluating or comparing performance of data and dimension reduction methods, 
particularly DDR combinations, quantitative measures have difficulties in accounting for 
qualitative differences in properties of methods. Hence, we translate in this section the needs for 
visual financial performance analysis into four qualitative dimensions for evaluating DDR 
combinations: form of structure preservation, computational cost, flexibility for problematic 
data and shape of the output. 

Form of structure preservation As all relations in a high dimensional space can obviously not 
be preserved in a lower dimension, there are differences in what locations are stressed when 
preserving the structure. Given these differences, the main characteristics of structure 
preservation should obviously match important desires of the particular task at hand. The key 
question is thus: Which relations are of central importance for visual financial performance 
analysis? With a main focus on visualizing individual financial entities on a low-dimensional 
display, correctly locating neighboring financial institutions becomes particularly important. 
This leads to trustworthiness of neighborhood relationships being more important than precision 
on the precise distance to those far away. Noise and erroneous data as well as comparability 
issues related to reporting differences, for instance, also motivate attempting this type of a local 
order-preserving mapping rather than focusing on global detail. 

Computational cost We oftentimes have access to extensive amounts of financial data in 
today's databases. This obviously sets some restrictions on computational cost and scalability of 
methods. While we acknowledge that computation time is not entirely a qualitative property, it 
has still not been incorporated in quantified evaluation measures. It is also worth to consider 
that computational expense is not only a one-off cost when creating a dimension reduction, but 
also when updating it. Combinations with data reduction methods may also affect the 
computational cost of a dimension reduction. 

Flexibility for problematic data Methods differ in flexibility for non-normal and incomplete 
data, something more common than not in real-world financial settings. This said, desired 
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properties of dimension reduction methods are flexibility for incomplete and non-normal data. 
While the former can be defined in terms of treatment of missing values, the latter depends 
largely on the task at hand. Most often data are pre-processed for ideal results, including 
treatment of skewed distributions. Yet, pre-processing seldom does, and is most often not 
desired to, compress the data into uniform density. Hence, one type of tolerance towards outliers 
can be derived from the output of methods. 

Shape of the output One of the main aims is to use a dimension reduction as a display to which 
we link additional information. In particular, we use the low-dimensional mappings as displays 
for information, such as individual data and structural properties. This turns the focus to the 
shape of the outputs or mappings. Outputs of dimension reduction mappings can take a wide 
range of forms. We consider the interrelated properties of the shape to be: continuous vs. 
discrete mappings, optional vs. mandatory data reductions and pre-defined vs. data-driven grid 
shapes. While a mandatory data reduction is generally not desirable, we do not consider it a 
significant disadvantage due to the large amounts of available data. This leads also to restricting 
mappings to discrete rather than continuous, whereas continuous mappings would obviously be 
desirable. The largest difference for interpretation, especially in terms of linking visualizations, 
is between pre-defined and data-driven grid shapes. While methods with data-driven grid shapes 
may better adapt to data, the methods with pre-defined grid shapes are superior in functioning as 
a regularly formed display for additional information. 

5. Qualitative and Quantitative Experiments 
This section introduces data and dimension reductions to financial performance analysis. We 
first discuss the relative goodness of methods for the task from a qualitative perspective. Then, 
we illustrate how data and dimension reduction methods can be utilized for visual financial 
performance analysis of European banks. 

For dimension reduction, we consider the SOM, metric MDS and Sammon’s mapping. Metric 
MDS and Sammon's mapping belong to the group of distance-preserving methods, while the 
SOM belongs to the group of topology-preserving methods with a pre-defined grid shape. For 
data reduction, we consider Ward’s hierarchical clustering, k-means clustering and VQ. Due to 
access to overabundant amounts of financial data, we concentrate herein mainly on serial and 
parallel combinations of these stand-alone methods for DDR combinations. While the SOM 
performs DDR by default, large SOMs can be further enhanced by a second-level clustering of 
its prototypes. Conceptually, the functioning of the SOM differs from the other DDR 
combinations as the two tasks of data and dimension reduction are treated as concurrent 
subtasks. In serial combinations, the dimension reduction is always subordinate  to the data 
reduction, while parallel combinations deal separately with the initial dataset. 
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5.1. A Qualitative Comparison 
This section pinpoints the qualitative discussion of DDR combinations for visual performance 
analysis to four key issues: form of structure preservation, computational cost, flexibility for 
problematic data and shape of the output. 

Form of structure preservation The main difference between DDR combinations is how the 
dimension reduction methods differ in the properties of data they attempt to preserve. For our 
task, this leads to one key question: Which methods better assure trustworthy neighbors? MDS-
based methods with objective functions attempting distance preservation, while likely being 
better at approximating distance structures, may end up with skewed errors across the 
projection. To this end, it has been shown that the SOM, which stresses neighborhood relations, 
better assures trustworthy neighbors (Venna and Kaski, 2001; Nikkilä et al., 2002). That is, data 
found close-by each other on a SOM display are more likely to be similar in terms of the 
original data space as well. The conceptual difference in structure preservation between 
distance- and topology-preserving methods is illustratively described by Kaski (2001) with an 
experiment on a curved two-dimensional surface in a three-dimensional space: the former 
methods may follow the surface in data with two dimensions, whereas the latter require three 
dimensions to describe the structure. 

Computational cost Expensive computations is obviously an issue when dealing with large 
financial datasets. Generally, computing pairwise distances between data is costly and the order 
of magnitude is N2. The topology preservation of the SOM relates instead to the grid size M 
with an order of magnitude of M2 (Kaski, 1997). This implies that if M=N then the methods 
have similar complexity, but more importantly that grid size M can be adjusted for cheaper 
complexity. Further, parallel DDR combinations suffer from an additional computational cost as 
the clustering is performed on the initial dataset rather than on a reduced number of prototypes. 
The computational cost of MDS-based methods motivates serial DDR combinations. Another 
issue related to computational cost is the lack of an explicit mapping function for the MDS-
based methods. Hence, when including new samples the projection needs to be recomputed. 
While new samples can be visualized via projection to their best-matching data, each update 
requires recomputing the projection.2 In contrast, the SOM can be cheaply updated with 
individual data using a sequential algorithm. 

Flexibility for problematic data The methods significantly differ in flexibility for problematic 
data. Methods dealing with distance preservation have obvious difficulties with incomplete data. 
However, the SOM, and its self-organization, can be seen as tolerant to missing values by only 
considering the available ones in matching (Samad and Harp, 1992). In practice, the SOM has 
been shown to be robust when up to approximately 1/3 of the variables are missing (Kohonen, 
2001; Kaski and Kohonen, 2001; Denny and Squire, 2005, Sarlin, 2011). Indeed, the SOM has 
even been shown to be effective for imputing missing values (e.g. Cottrell and Letrémy, 2005). 
Tolerance towards outliers is measured in terms of representation of skewed distributions. An 

                                       
 
2 While relative MDS (Naud and Duch, 2000) allows to add new data to the basis of an old MDS, it does still not 
update all distances within the mapping. 
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MDS-based mapping becomes difficult to interpret if it is stretched towards directions of 
outliers. While the processing of the SOM does not per se treat outliers, its regularly shaped 
grid of prototypes facilitates visualizing data with non-uniform density functions. 

Shape of the output A key to using a dimension reduction as a display, and linking information 
to it, is the shape of its output. While the SOM has a discrete mapping, mandatory data 
reduction and predefined grid shape, MDS-based methods are its contrasts by having continuous 
mappings, optional data reduction and data-driven lattice (if combined with data reduction). The 
predefined SOM grid, while also having drawbacks for representing structural properties of 
data, facilitates the interpretation of linked information. Today, it is standard that the SOM 
comes with a wide set of linked extensions for visual analytics, such as the so-called component 
planes, U-matrix and frequency plots (Vesanto, 1999). Even though visual aids for showing 
distance structure and density compensate for constraints set by the grid shape, there is a large 
group of other aids that enhance the representation of available information in data. The visual 
aids, while not always being even applicable, have generally not been explored in the context of 
MDS-based projections. Component planes, for instance, are difficult to visualize due to the 
lack of a reduced number of prototypes. Even DDR combinations with serial VQ, i.e. 
processing similar to that of the SOM, would still lack the concept of neighborhood relations of 
a regularly shaped grid. 

5.2. Illustrative Experiments 
The qualitative discussion of properties of DDR combinations for financial performance 
analysis still lacks illustrative examples. Here, we show experiments with the above discussed 
methods. Dimension reduction is performed with the SOM, metric MDS and Sammon’s 
mapping and data reduction with Ward’s hierarchical clustering, k-means clustering and VQ. 
We explore various combinations for DDR for achieving easily interpretable models for visual 
financial performance analysis. The methods are chosen and combined as to their suitability for 
data reduction of dimension reductions, and vice versa. 

Data The dataset used in this paper consists of annual financial ratios for banks from the 
European Union, including all provided financial ratios in the Bankscope database. The pre-
processing of this dataset follows the suggested framework in Eklund et al. (2011). The dataset 
consisted initially of 38 financial ratios for 1,236 banks spanning from 1992:12–2008:12. We 
chose to use 24 ratios by dropping those with more than 25% missing data. Observations with 
more than 1/3 of missing values were removed. Finally, we were left with a resulting 9,655 
rows of data, and a total of 855 banks. Although the SOM is tolerant to missing values, we need 
to impute missing data as distance-preserving methods require complete data. We use the SOM 
for imputing missing values. A SOM allows mapping incomplete data to their BMUs by only 
considering the available variables. Hence, complete data were used for training a SOM, 
incomplete data were mapped to their BMUs and the missing values were imputed from their 
BMUs. Moreover, although outliers are not a problem per se, they still affect the interpretability 
of the models. Not to lose significant amounts of data, we use modified boxplots for trimming 
with replacement. The modified boxplot is preferred over Winsorizing, for instance, as it 
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accounts for variable-specific distributions, resulting in replacement of a total of 7.39% of the 
data, distributed as needed per variable and tail. 
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Notes: The figures show parallel DDR combinations on the entire dataset; Sammon’s mapping is combined with k-means 
clustering, and MDS and the SOM are combined with Ward's clustering.. Color codes on each mapping correspond to clusters and 
the superimposed trajectories to a performance comparison of three large European banks from 2002-2008. 

Figure 2. Parallel DDR combinations applied to the financial dataset, as well as trajectories for 
three large European banks from 2002–08. 

Parallel DDR Figure 2 shows parallel DDR combinations on the entire dataset. Sammon’s 
mapping is combined with k-means clustering, and MDS and the SOM are combined with 
Ward's clustering.3 Ward's clustering of the SOM is, however, performed on its prototypes 
rather than on the dataset and restricted to agglomerate only adjacent clusters in the SOM 
topology. We do not, however, consider this option for MDS-based projections as there is no 
natural definition of adjacency. On top of all three mappings, we superimpose cluster color 
coding and a performance comparison of trajectories from 2002-2008 for three large European 
banks. The projections of MDS and Sammon’s mapping on this large dataset are very similar, 
whereas k-means clustering has less overlapping cluster memberships in the mapping than 
Ward's clustering. The trajectories as well as the underlying variables confirm that, while the 
orientations of the two MDS-based projections are somewhat different from those of the SOM 
                                       
 
3 When training SOMs, one has to set a number of parameters. We mainly follow the decision-framework 
developed in Eklund et al. (2011). We use a set of quality measures to track the topographic and 
quantization accuracy as well as clustering of the map. The map format is chosen to be 75:100, as it 
approximates the recommended ratio of the two largest eigenvalues (see e.g. Kohonen, 2001). 
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model, their structure is still very similar. Yet, the computational cost differs significantly. 
While it takes on an ordinary personal computer only a few seconds to train SOM-based models 
on these data, the MDS-based projections require several hours on a dedicated server. 

k-means clustering and Sammon's mapping SOM, Ward's clustering and Sammon's mapping

 
Notes: The figure shows serial DDR combinations on the entire dataset; Sammon’s mapping is combined with k-means clustering, 
and the SOM with second-level Ward's clustering.. Color codes on each mapping correspond to clusters. Not to clutter the display, 
trajectories are not displayed in this figure. 

Figure 3. Serial DDR combinations applied to the financial dataset. 

Serial DDR For cheaper complexity, we further explore possibilities of DDR by testing serial 
combinations. Figure 3 shows a Sammon's mapping of the k-means cluster centroids as well of 
the second-level centroids of the SOM, where size represents the number of data in each cluster. 
This type of usage of MDS-based methods was already proposed by Sammon (1969) due to 
their high computational cost, and later applied by Flexer (2001), for instance. It is, indeed, a 
cheap way to illustrate relations between the cluster centroids, but lacks detail for structural as 
well as individual analysis. 

VQ, Sammon's mapping and k-means clustering SOM, Sammon's mapping and Ward's clustering

 
Notes: The figures show serial and parallel DDR combinations on the entire dataset; Sammon’s mapping is combined with VQ and 
k-means clustering, and the SOM with Ward's clustering.. Color codes on each mapping correspond to clusters and the net-like 
representation illustrates neighborhood relations. 

Figure 4. Serial and parallel DDR combinations applied to the financial dataset. 

Serial and parallel DDR Costly but detailed MDS-based projections in Figure 2 and cheap but 
very crude projections in Figure 3 motivate finding a compromise solution. For reducing 
computational expense, we still end up relying on a serial DDR combination. For more detail, 
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however, we attempt to reduce the initial dataset to a smaller but representative dataset. This 
type of data compression can be achieved with standard VQ that approximates probability 
density functions of data. The compressed prototypes can then be used as an input for a parallel 
DDR. Conceptually, while still lacking the interaction between the tasks as well as the regular 
grid shape, we come close to what is achieved using a SOM in Figure 2 by relying on both 
serial and parallel DDR combinations. The left plot in Figure 4 shows a VQ of the initial dataset 
and then a subsequent Sammon's mapping and k-means clustering on the VQ prototypes. The 
right plot in Figure 4 shows a corresponding Sammon's mapping of SOM prototypes with a 
superimposed cluster color coding. However, the figure illustrates two issues: the ordered SOM 
prototypes have less overlap of cluster memberships and the importance of naturally defined 
topological relations. The former issue is most likely a result of interaction between the tasks of 
data and dimension reduction, but might also benefit from the inclusion of neighborhood 
relations when agglomerating clusters. The latter issue of a regularly shaped grid is particularly 
useful when attempting to visualize as much of the available information as possible through 
linked visualizations. 

5.3. The SOM and its visualization aids 
This section first briefly reviews visualization aids for the SOM and then illustrates the use of 
the regularly shaped SOM grid, and its visualization aids. Figure 2 showed the two-dimensional 
SOM grid, and trajectories for three large European banks from 2002–08, but a central question 
remains: How should we interpret the map? The possibility of linking additional information to 
the SOM grid has stimulated the development of a wide scope of visualization aids (see Vesanto 
(1999) for an early overview). Generally, the aids fall into one of three groups: (1) those 
compensating structural properties inherent in data that the regular grid shape eliminates, (2) 
those extending the visualization of properties inherent in data but not normally accessible in 
dimension reductions, and (3) those linking the SOM grid with other methods or data to 
enhance the understanding of the task. 

The first group includes means to represent the distance structure and density on a SOM, 
something missing due to the VQ and grid shape. Densities on the SOM are generally assessed 
with frequency plots and the Pareto density estimation matrix (P-matrix) (Ultsch, 2003a). 
Examples of aids for assessing distance structures are Sammon's mapping, the Unified distance 
matrix (U-matrix) (Ultsch and Siemon, 1990) and cluster connections (Merkl and Rauber, 
1997). Moreover, some methods attempt to account for both structures and densities, such as the 
U*-matrix (Ultsch, 2003b), the sky metaphor visualization (Latif and Mayer, 2007), the 
neighborhood graph (Poelzlbauer et al., 2005) and smoothed data histograms (Pampalk et al., 
2002). 

The second group consists of visualizations that enhance the representation of multidimensional 
information. Component planes are a standard method for visualizing the spread of values of 
individual dimensions on the SOM, but they have been further enhanced in several aspects.  For 
instance, Vesanto and Ahola (1999) use a SOM for reorganizing the component planes 
according to correlations and Neumayer et al. (2007) introduced the metro map discretization to 
summarize all component planes onto one plane. Kaski et al. (2001) have developed a 
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visualization of the contribution of each variable to distances between prototypes, that is, the 
cluster structure. Another extension, while partly also belonging to the other groups, is 
visualization of vector fields (Poelzlbauer et al., 2006) for assessing contributions to the cluster 
structure and for finding correlations and dependencies in the underlying data. 

The third group uses other methods or data for further enhancing the understanding of the task. 
One common way to represent cluster structures in a SOM is applying a second-level clustering 
on the prototypes, and visualizing it through color coding (Vesanto and Alhoniemi, 2001). This 
has also been done using fuzzy methods (Sarlin and Eklund, 2011), where soft memberships of 
prototypes in each cluster can be represented on their own grids or associated to individual data. 
The strengths and directions of state transition patterns on a SOM can similarly be represented 
on own grids, such as prototype-to-cluster transition probabilities in Sarlin et al. (2012), not to 
mention using the prototypes as an input for some other predictive method, such as the neural 
network in Serrano Cinca (1996), and visualizing the prediction on the SOM grid. An example 
of combining the display of a SOM with other data is to link network relations between entities 
on the grid (Sarlin, 2012). In a financial setting, this enables relating the state of financial 
performance of a cross section of entities to their network relations, i.e. systemic relevance. 

 

G

F

E

D

C

B

A

SOM and Ward's clustering

 

100

150

200

250

U-matrix

20

40

60

80

100

120

140

Frequency plot

 
        (a)              (b)                   (c) 

    
50

100

150

Capital ratios

-50

0

50

100

150

200

250

Loan ratios

-30

-20

-10

0

10

20

Profitability ratios

 
        (d)              (e)                   (f) 

    0

0.2

0.4

0.6

0.8

Cluster ABC

0.1

0.2

0.3

0.4

0.5

0.6

Cluster D

0.2

0.4

0.6

0.8

Cluster EFG

 
        (g)              (h)                   (i)  
Notes: The figures link additional information to the regularly shaped SOM grid. Charts (a-c) illustrate structural properties of the 
model: (a) shows cluster memberships of the second-level clustering, (b) shows average distances between prototypes, or the so-
called U-matrix, and (c) shows the frequency distribution on the SOM grid. Charts (d-f) show the spread of three subdimensions of 
financial performance on the SOM grid: capital, loan and profitability ratios. Charts (g-i) show for each prototype the probability of 
transition to three areas on the SOM grid: Clusters A, B and C, cluster D, and clusters E, F and G. 

Figure 5. An exemplification of linking information to the SOM grid. 
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Here, we show some examples of how visualizations from the above three groups can be linked 
to the SOM. The previously presented Figure 2 already showed a financial performance 
comparison over time of three large European banks using labels and trajectories. Figure 5 uses 
the regular shape of the SOM grid as a basis for nine different representations of additional 
information. First, Figures 5a, 5b and 5c illustrate structural properties of the model: (a) shows 
hard cluster memberships of the second-level clustering, (b) shows distance structures using a u-
matrix visualization, and (c) shows the frequency distribution on the SOM grid. While Figures 
5a and 5b show similar characteristics of cluster structures, Figure 5c shows that the upper-left 
corner of the map is comparatively more dense. Second, Figures 5d, 5e and 5f enable assessing 
correlations and distributions by showing the spread of three financial performance measures on 
the SOM grid: capital, loan and profitability ratios. Here, one can observe that, generally, the 
right part represents well-performing and the left part poor banks. Third, Figures 5g, 5h and 5i 
illustrate temporal transition patterns by showing for each prototype the probability of transition 
to three areas on the SOM grid: clusters A, B, and C (good); cluster D (average); and clusters E, 
F and G (poor banks). The figures show that, while the left part (poor) is more stable than the 
right (good), the center is a transition cluster. Hence, the first group is represented by Figures 5b 
and 5c, the second group by Figures 5d, 5e and 5f, and the third group by 5a, 5g, 5h and 5i. 

6. Discussion 
This paper has considered data and dimension reduction methods, as well as their combination, 
for visual financial performance analysis. The discussions and illustrations in Section 5, while 
being at times somewhat trivial, are motivated by inconsistency of argumentation for and 
application of various methods. The main conclusion of the comparison is that the SOM has 
several useful properties for financial performance analysis. In particular, we have noted the 
following advantages of the SOM over alternative distance-preserving methods: 1) trustworthy 
neighbors, 2) low computational cost, 3) flexibility for problematic data, and 4) a regularly 
shaped grid. It is, however, worth noting that the relative goodness of a method depends always 
on the task in question. That said, the SOM is obviously far from a panacea for all sorts of data 
and dimension reduction. When only attempting stand-alone tasks, it is indeed very likely that 
there exists better methods than the SOM. Similarly, when attempting DDR, the superiority of 
one method over others depends entirely on the aims of the task in question. 

Even though the SOM has been assessed as superior for visual financial performance analysis, it 
is worth to carefully consider its limitations: 

1.The SOM performs a crude mapping. Rather than data points, the SOM attempts to embed 
the prototypes. A significant constraint if detail is of central importance. 

2.The regular grid shape sets some restrictions on the SOM. For instance, it may cause 
interpolating sparse locations with idle prototypes, lead to an analyst overinterpreting 
the regular-like y and x axes, and lead to the need for additional visual aids to fully 
represent structures. 
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3.Mathematical treatment of the SOM has shown to be problematic. The lack of an 
objective function, as well as a general training schedule for or proof of convergence, 
complicates assessing convergence of a SOM. 

The comparison in this paper has covered classical first-generation dimension reduction 
methods. The main question that remains is: Can the results of this comparison be generalized 
to all available methods? As reviewed in Section 2, CCA has been shown to outperform the 
SOM in terms of trustworthiness of neighborhood relations (Himberg, 2004; Kaski and Venna, 
2007). However, it falls short in the shape of the output. It is thus important to consider methods 
from the second generation with the key properties of the SOM. There are two conceptually 
similar topology-preserving methods that possess DDR capabilities and a pre-defined grid 
shape: GTM and XOM. GTM mainly differs from the SOM by relying on well-founded 
statistical properties based upon Bayesian learning with an objective function, namely the log-
likelihood, which is optimized by the Expectation-maximization algorithm. This objective 
function directly facilitates assessing convergence of the GTM. Even though Bishop et al. 
(1998b) originally stated that the GTM is computationally comparable to the SOM, it has later 
been shown that the SOM is cheaper (e.g. Rauber et al., 2000). This may result from the number 
of developed algorithmic shortcuts for computing SOMs, such as fast-winner search (Kaski, 
1999). Both methods are flexible for problematic data, i.e. outliers and missing values, through 
a similar pre-defined grid shape and an extension of the GTM for treating missing values 
(Carreira-Perpiñan, 2000; Sun et al., 2001). However, while choosing parameters for the SOM 
may be a tedious task, given adequate initializations and parameterizations, convergence has 
seldom appeared to be a problem in practice (Yin, 2008). A decade after the introduction of the 
GTM, neither it nor its variants, such as the S-Map (Kiviluoto and Oja, 1998), have displaced 
the standard SOM. 

The XOM is a computational framework for data and dimension reduction. By inverting the 
functioning of the SOM, the XOM systematically exchanges functional and structural 
components of topology-preserving mappings by self-organized model adaptation to the input 
data. It has two main advantages compared to the SOM: (a) reduced computational cost, and (b) 
applicability to non-metric data as there is no restriction on the distance measures. Even though 
the use of non-metric dissimilarity measures is of little use on the data in this paper, while still 
having potential for other pairwise financial data, the reduced computational cost is particularly 
beneficial for large financial datasets in general. The XOM has, however, been recently 
introduced and is thus still lacking thorough tests in relation to other methods, such as 
comparisons to SOMs with algorithmic shortcuts. Yet, the XOM should be considered as a valid 
alternative to the SOM paradigm. 

It is worth to note, as widely suggested (e.g. Trosset, 2008; Lee and Verleysen, 2007), that one 
of the main reasons for the SOM being very popular for a broad range of tasks, such as 
classification, clustering, visualization, prediction, missing value imputation etc, might be 
because it produces an intuitive output using a simple and an intuitive principle. This simplicity, 
while being beneficial for a method to be widely accepted, applied and understood, should still 
not be used for assessing relative goodness. One should, nevertheless, note that when 
introducing dimension reductions to the general public, such as policy- or decision-makers in 
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general, simplicity is definitely an asset. To this end, this paper argues that the optimal method 
for financial performance analysis is one from the family of methods that perform a topology-
preserving mapping to a regularly shaped and predefined grid, out of which a method has to be 
chosen according to one's own preferences. 

7. Conclusions 
Every task has its own needs. Data and dimension reduction for financial performance analysis 
should thus be performed with methods that have the best overall suitability for that task, not the 
best data-processing capabilities for some other objective. To this end, this paper has addressed 
the choice of method for visual financial performance analysis from a qualitative perspective. 
We have first discussed the properties of three inherently different classical first-generation 
dimension reduction methods, and their combination with data reduction, and illustrated their 
performance in a real-world financial application. The conclusions drawn from the comparison 
of classical methods was then prolonged to second-generation methods. The qualitative 
discussion and experiments showed superiority of the SOM for financial performance analysis 
in terms of four dimensions: form of structure preservation, computational cost, flexibility for 
problematic data and shape of the output. When considering second-generation methods, the 
recently introduced the GTM and the XOM have clear potential for similar tasks. GTM 
improves the SOM paradigm with its well-defined objective function, but is computationally 
more costly, while XOM is a recently introduced promising method, but still lacks thorough 
comparisons. 

From the discussions in this paper, an obvious conclusion is that the family of methods that 
perform a topology-preserving mapping to a regularly shaped and predefined grid provides the 
means for visual financial performance analysis. The aims and needs for the task at hand, where 
the main focus lies on using the output as a display for additional information in general and 
individual data in particular, are neither rare objectives in other fields. While not being 
generalizable to their full extent, parts of the conclusions herein will also apply in other fields 
and domains. The methods advocated in this paper do not, however, provide a panacea for 
visual financial performance analysis. They should be paired with other methods, not least 
visualizations of different kinds, that compensate for missing properties when having, for 
instance, a regularly shaped grid. It also motivates exploring the information commonly linked 
to the SOM in not only the same family of methods with predefined grid shapes, but also other 
dimension reduction paradigms in general. 
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