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Abstract

The simple intramolecular model for gene assembly in ciliates predicts correctly
the assembly of all currently known ciliate gene patterns. The model consists
of three molecular operations: the ld (loop, direct-repeat excision), the simple hi
(hairpin, inverted-repeat recombination), and the simple dlad (double-loop alter-
nating direct-repeat recombination) operations. The gene transformations con-
jectured by the simple intramolecular model for gene assembly can be studied as
operations on the so-called directed-overlap inclusion (in short, DOI) graphs in-
troduced in [2]. In this paper we focus on characterizing the DOI graphs that are
reducible using only some combinations of the three simple operations. We also
show that the DOI graph model is confluent.

Keywords: Directed overlap-inclusion graphs, gene assembly in ciliates, simple
operations, confluent
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1 Introduction

Ciliates are an ancient group of unicellular eukaryotes which possess two types
of nuclei: macronuclei (MAC) and micronuclei (MIC) [8, 3]. Both types of nu-
clei are sequences of building blocks called macronuclear destined sequences,
or MDSs. In macronuclear genes the MDSs are presented in an orthodox order,
whereas in micronuclear genes they are shuffled, as well as seperated by non-
coding sequences called internally eliminated sequences, or IESs. During the
process of sexual conjugation, the old macronucleus disintegrates and a new one
is developed from the micronucleus. In this process, the micronuclear genes get
transformed to their macronuclear form by having their IESs removed and their
MDSs sorted in the orthodox order; this is facilitated by some short, specific nu-
cleotide sequences called pointers that are repeated at the end of an MDS and at
the beginning of the following MDS in macronuclear gene. This process is called
gene assembly, see [8, 13].

We focus in this paper on the intramolecular model for gene assembly in cili-
ates, introduced in [9, 14]. The model consists of three molecular operations, ld,
hi, and dlad, all conjecturing the folding of the gene in a specific pattern (a loop, a
hairpin, or a double loop) so that a pair of pointers (two pairs in the case of dlad)
are aligned. We illustrate the folding and recombinations involved in each oper-
ations in Figure 1 and refer for details on these operations to [8, 3]. The simple
version of the intramolecular model, introduced in [10], assumes that the folds
involved in each of the three operations are as simple as possible: in-between the
aligned pointers there is a minimal number of other pointers (zero in the case of
simple ld and simple dlad, one in the case of simple hi). The resulting model was
shown in [10] to be capable of explaining the assembly of all currently known
ciliate genes in [7]; we refer to [8] and [3] for more details. Various modeling
frameworks have been proposed to represent the gene assembly in ciliates, rang-
ing from signed permutations [11] to a string rewriting system [5, 6] to graph-
based models [4, 1]. In this study, we investigate the reduction power of simple
operations on the latest of such representations called directed overlap inclusion
(DOI) graphs introduced in [1].

2 Preliminaries

We introduce here some of the notions and notations we use throughout the paper.
For more details we refer to [8].

2.1 Legal strings

Let ∆k = {2, 3, . . . , k}, for some k ≥ 1, be an alphabet whose letters are called
pointers, and let Σk = ∆k ∪ {m}, where letter m refers to the (begining and
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ending) marker. We also denote the signed copy of Σk by Σk = ∆k ∪{m}, where
Σk ∩ Σk = ∅. We make the convention that ¯̄p = p for all p ∈ Σk ∪ {m}. Let
Σz

k = (Σk ∪ Σk)
∗.

String u ∈ Σz
k is called a legal string if u contains two occurrences from

the marker set {m, m̄} and for any p ∈ ∆k, u contains either 0 or 2 occur-
rences from the set {p, p̄}. We define the domain of u as dom(u) = {p ∈ Σk |
either p or p̄ occurs in u}. We say that u is sorted if dom(u) = {m}.

Let p ∈ Σk ∪ Σ̄k and let u ∈ Σz
k be a legal string, we say that p is positive if

p and p̄ occurs in u, and we say that it is negative otherwise. Let u = u1p
′u2p

′′u3,
where u1, u2 and u3 are strings over Σk ∪ Σk and p′, p′′ ∈ {p, p}; substring u2 is
called the p-interval of u.

For any distinct p, q ∈ dom(u), p and q have one of the following relations:

• p and q overlap in u if exactly one occurrence from {p, p} can be found in
the q-interval of u. We denote the overlap relation by p ⇒u q, if the first
occurrence of p occurs in u before the first occurrence of q, and we denote
it by q ⇒u p otherwise;

• p includes q if the two occurrences from {q, q} are found within the p-
interval. This relation is denoted by p→u q;

• p and q are disjoint in u if they do not overlap and neither is included in the
other in u.

A gene can be represented as a legal string through its sequence of pointers and
markers, for example, the legal string corresponding to actin I gene in Sterkiella
nova is 34456756789m3̄ 2̄m289, see [8].

The three molecular operations are formulated as rewriting rules on legal
strings as follows.

Definition 1 ([5]). The string pointer reduction system is formalized as follows.
In each case p, q ∈ ∆k are distinct pointers and u1, u2, u3 ∈ Σz.

i. The simple string negative rule ssnp is defined as follows:

ssnp(u1p̃p̃u2) = u1u2,

where p̃ ∈ {p, p̄}. We denote Ssn = {ssnp | p ≥ 2}.

ii. The simple string positive rule sspp is defined as follows:

sspp(u1p̃q̃ ¯̃pu3) = u1 ¯̃qu3,

where p̃ ∈ {p, p̄} and q̃ ∈ {q, q̄}. We denote Ssp = {sspp | p ≥ 2}.

iii. The simple string double rule ssdp,q is defined as follows:

ssdp,q(u1p̃q̃u3p̃q̃u5) = u1u3u5,

where p̃ ∈ {p, p̄} and q̃ ∈ {q, q̄}. We denote Ssd = {ssdp,q | p, q ≥ 2}.
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Let ϕ = ϕr ◦ ϕr−1 ◦ . . . ◦ ϕ1 be a composition of rules ϕi ∈ Ssn∪ Ssp∪ Ssd,
for all 1 ≤ i ≤ r; we call any such composition a reduction strategy. We say that
ϕ is successful for legal string u if ϕ(u) = mm or ϕ(u) = m̄m̄.

Example 1. Let u = 34456756789m3̄ 2̄m289 be the legal string corresponding
to actin I gene in Sterkiella nova. Then ssp3 ◦ ssn5 ◦ ssn4 ◦ ssp2 ◦ ssd8,9 ◦ ssd6,7 is a
reduction strategy for u:

u1 = ssd6,7(u) = 3445589m3̄ 2̄m289,

u2 = ssd8,9(u1) = 34455m3̄ 2̄m2,

u3 = ssp2(u2) = 34455m3̄ m̄,

u4 = ssn4(u3) = 355m3̄ m̄,

u5 = ssn5(u4) = 3m3̄ m̄,

u6 = ssp3(u5) = m̄m̄.

2.2 Overlap-inclusion graphs

Overlap-inclusion graphs (in short, OI graphs) have been introduced in [4]. Using
our notation (which is slightly different than that of [4]), for a legal string u its
overlap-inclusion graph Gu = (V, σ, E) is defined as follows:

• V = dom(u);

• σ : V → {+,−} is the signing of vertices: for each p ∈ V , σ(p) = + if p
is a positive pointer in u and σ(p) = − otherwise;

• E = {{p, q} | p⇒u q or q ⇒u p)}
∪
{(p, q) | p→u q}.

In other words, for any pair of overlapping pointers {p, q} in u there is an undi-
rected (overlap) edge in G between p and q, and for any pointer q whose interval
is included in the interval of some pointer p, G has the directed (inclusion) edge
p→G q.

The simple negative rule and the simple positive rule can be defined on OI
graphs so that they correspond to the string pointer reduction system; for details
we refer to [4]. The simple double rule could not be defined for such graphs. The
rule could however be introduced, see [1], on an extension of these graphs, the
DOI graphs, that we discuss in the next session.

Example 2. Let u be the legal string corresponding to actin I gene in Sterkiella
nova. Its corresponding OI graph is given in Figure 2(a).
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2.3 Directed overlap-inclusion graphs
We recall here the notion of directed overlap-inclusion (DOI) graphs introduced
in [1] and recall some of their basic properties that will be needed in this paper. We
first recall that a directed graph G is called connected if for any distinct vertices u
and v of G, there is either a (directed) path from u to v, or a (directed) path from v
to u. We also recall that for a set of vertices U of G we denote by G \U the graph
obtained from G by removing all vertices in U and all edges incident to them.

Definition 2 ([1]). Let u be a legal string over some Σk. The directed overlap-
inclusion (DOI) graph Gu = (V, σ,Eo, Ei) corresponding to u is defined as fol-
lows:

• V = dom(u) is the set of vertices;

• σ : V → {+,−} is the signing of vertices such that for each p ∈ V ,
σ(p) = + if p is a positive pointer in u and σ(p) = − otherwise;

• Eo and Ei are sets of its directed edges, Eo = {(p, q) | p ⇒u q} and
Ei = {(p, q) | p→u q}.

For a DOI graph G and any string u such that G = Gu we say that G corresponds
to u.

Two DOI graphs G and H have the same structure, denoted by G ≡ H , if
there is a graph isomorphism between G and H .

Example 3. Let u be the legal string corresponding to actin I gene in Sterkiella
nova; its corresponding directed overlap-inclusion graph is given in Figure 2(b).

Theorem 1 ([1]). Any DOI graph G is a directed acyclic graph.

Definition 3 ([2]). Let G be a DOI graph and p an arbitrary vertex of G. We
introduce the following terms:

i. Incoming inclusion edges: we denote by inSeti(p) the set of all vertices q
such that q → p is an (inclusion) edge in G. Also, inDegi(p) is the number
of vertices in inSeti(p).

ii. Outgoing inclusion edges: we denote by outSeti(p) the set of all vertices q
such that p→ q is an (inclusion) edge in G. Also, outDegi(p) is the number
of vertices in outSeti(p).

iii. Incoming overlap edges: we denote by inSeto(p) the set of all vertices q
such that q ⇒ p is an (overlap) edge in G. Moreover, inDego(p) is the
number of vertices in inSeto(p).
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iv. Outgoing overlap edges: we denote by outSeto(p) the set of all vertices q
such that p ⇒ q is an (overlap) edge in G. Also, outDego(p) is the number
of vertices in outSeto(p).

We recall now the definition of simple operations for DOI graphs introduced
in [2]. The operations are defined in general for any directed, vertex- and edge-
labeled graph, in particular for DOI graphs.

Definition 4 ([2]). Let G = (V, σ, Eo, Ei) be a directed, vertex- and edge-labeled
graph. For any distinct vertices p, q ∈ V \ {m}, the graph operations sgnp, sgpp
and sgdp,q are defined on G as follows:

(i) The simple graph negative rule sgn for p, denoted sgnp, is applicable to G if:

• σ(p) = − and

• inDego(p) = outDego(p) = outDegi(p) = 0.

In this case, sgnp(G) = G \ {p}. We denote Sgn = {sgnp | p ∈ ∆k, p ≥ 2}. We
say that sgnp corresponds to the string-rewriting rule ssnp.

(ii) The simple graph positive rule sgp for p, denoted sgpp, is applicable to G if:

• σ(p) = +,

• inDego(p) + outDego(p) = 1, and

• outDegi(p) = 0.

Let q be the vertex with the property inSeto(p) ∪ outSeto(p) = {q}. In this case,
sgpp(G) is the graph obtained from G \ {p} by switching the label of q: q is
negative in sgpp(G) if and only if it is positive in G. We denote Sgp = {sgpp |
p ∈ ∆k, p ≥ 2}. We say that sgpp corresponds to the string-rewriting rule sspp.

(iii) The simple graph double rule sgd for p, q, denoted sgdp,q, is applicable to G
if:

• σ(p) = σ(q) = −,

• q ∈ outSeto(p),

• inSeto(p) ∪ {p} = inSeto(q),

• outSeto(p) = outSeto(q) ∪ {q},

• inSeti(p) = inSeti(q) and

• outSeti(p) = outSeti(q).
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In this case, sgdp,q(G) = G \ {p, q}. We denote Sgd = {sgdp,q | p, q ∈ ∆k, p, q ≥
2, p ̸= q}. We say that sgdp,q corresponds to the string-rewriting rule ssdp,q.

A reduction strategy is a composition of simple graph rules ϕ = ϕpn ◦ . . . ◦
ϕp2 ◦ϕp1 . We say that ϕ is successful on G if ϕ(G) is the graph having only vertex
m where m is negative. Let Ω ⊆ {Sgn, Sgp, Sgd} be a set of types of graph rules.
If all rules in ϕ are from the rule sets indicated by Ω, then we say that ϕ is an
Ω-strategy and that ϕ is Ω-successful, resp. We also say that a directed, vertex-
and edge-labeled graph is Ω-reducible if it has an Ω-successful reduction strategy.

Example 4. Let G be the DOI graph corresponding to actin I gene in Sterkiella
nova. A successful reduction strategy of G is presented in Figure 3.

We recall the equivalence between the string-based model for simple gene
assembly and the DOI graph-based model.

Theorem 2 ([2]). Let u be a legal string, Gu its corresponding DOI graph. Let
also ϕ ∈ Ssn∪ Ssp∪ Ssd and ψ ∈ Sgn∪ Sgp∪ Sgd be the DOI graph rule corre-
sponding to ϕ. Then ϕ is applicable to u if and only if ψ is applicable to Gu. In
this case, Gϕ(u) = ψ(Gu).

The following result is straightforward from the definition of our operations
and that of the DOI graph equivalence.

Lemma 3. Let G, H be two DOI graphs such that G ≡ H; let µ : G→ H be the
graph isomorphism between them.

i. If sgnp is applicable to G, then sgnµ(p) is applicable to H and sgnp(G) ≡
sgnµ(p)(H).

ii. If sgpp is applicable to G, then sgpµ(p) is applicable to H and sgpp(G) ≡
sgpµ(p)(H).

iii. If sgdp,q is applicable toG, then sgdµ(p),µ(q) is applicable toH and sgdp,q(G) ≡
sgdµ(p),µ(q)(H).

3 The reduction power of the simple operations
In this section we focus on characterizing the DOI graphs that are reducible using
simple operations of different types.

3.1 {Sgn}-reducible graphs
Theorem 4. Let G = (V, σ, Eo, Ei) be a DOI graph. G is Sgn-reducible if and
only if Eo = ∅ and σ(v) = −, for all v ∈ V .
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Proof. We first prove the reverse implication. Let G be a DOI graph with a single
negative node; clearly G is reducible through Sgn operations. Let n ≥ 2 and
assume that all DOI graphs of size n − 1 with only inclusion edges and negative
vertices are reducible using only sgn. Let G be such a DOI graph of size n. By
Theorem 1, G is acyclic and so there is a node p such that inDegi(p) = 0. Thus,
sgnp(G) is applicable to G; let G′ = sgnp(G)=G\{p}. The conclusion follows by
applying the induction hypothesis to G′.

The proof of the direct implication is straightforward. Let G be a DOI graph
reducible using only Sgn. By Definition 4, applying an Sgn operation neither
removes any overlap edge, nor changes any signing of the vertices. Therefore all
edges are inclusion edges and all vertices are negative.

3.2 {Sgn, Sgp}-reducible graphs
The next theorem characterizes the reduction power of Sgn∪ Sgp-operations. The
formulation and the proof of the result follows closely the corresponding result
of [4] for OI graphs. We first introduce some notations.

For a composition ϕ = ϕpn◦. . .◦ϕp2◦ϕp1 of Sgn∪ Sgp-operations ϕpi , 1 ≤ i ≤
n, we denote by dom−(ϕ) = {p ∈ ∆k | ∃1 ≤ i ≤ n such that ϕpi = sgnp}. We
also denote ord(ϕ) = (p1, p2, . . . , pn) the order in which the vertices are reduced
by ϕ.

For a directed graph G we say that an ordering P = (p1, p2, . . . , pn) of its
vertices is anti-topological if there is no edge from pi to pj for all i < j. In
particular, in the case of a DOI graph, an anti-topological ordering of its vertices
takes into account both its inclusion and its overlap edges.

For a DOI graph G = (V, σ, Eo, Ei), we define Go = (V, σ,E ′
o) to be the

undirected subgraph of G induced by its overlap edges: E ′
o = {{i, j} | (i, j) ∈

Eo or (j, i) ∈ Eo}. For a vertex p, degGo
(p) denotes its degree in the (undirected)

graph Go.

Theorem 5. Let G = (V, σG, Eo, Ei) be a DOI graph. Let N ⊆ V \ {m} and
P = (p1, p2, . . . , pn, pn+1) a linear ordering of V with pn+1 = m. There is an
{Sgn, Sgp}-successful reduction ϕ ofG withN = dom−(ϕ) and P = (ord(ϕ),m)
if and only if the following conditions are satisfied:

i. Go is a forest;

ii. For each vertex q ∈ G, degGo
(q) is even if and only if σG(q) = −;

iii. Each tree in the forest Go has exactly one vertex in N ∪ {m};

iv. Consider Go as a rooted forest with its roots in N ∪ {m} and denote by
GN the graph obtained from G by changing the orientation of all its edges
s ⇒ t where s is a child of t in the rooted forest Go. Then GN is acyclic
and P is an anti-topological ordering of GN .
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Proof. We prove the result by showing the equivalence of both sides of the state-
ment with the following set of conditions:

a. For all 1 ≤ i < j ≤ n+ 1, there is no inclusion edge pi → pj in G;

b. For all 1 ≤ i ≤ n, if pi ∈ N , then there is no overlap edge between pi and pj
in G, in either direction, for any 1 ≤ i < j ≤ n. If pi ̸∈ N , then there is
exactly one j > i such that there exists an overlap edge between pi and pj
in G.

c. For each vertex q ∈ G, degGo
(q) is even if and only if σG(q) = −.

Claim 1. The left-hand side of the theorem’s statement holds if and only if condi-
tions a-c are satisfied.

Proof of Claim 1: Let ϕ = ϕpn ◦ . . . ◦ ϕp1 be an {Sgn, Sgp}-successful strategy,
N = dom−(ϕ) and P = (ord(ϕ),m) = (p1, p2, . . . , pn, pn+1), with pn+1 = m.
Denote Gi = ϕpi ◦ . . . ◦ ϕp1(G), for all 1 ≤ i ≤ n.

Let 1 ≤ i < j ≤ n+ 1, i.e., pi is reduced before pj either by an sgn or an sgp
operation. By Definition 4 we can conclude that there is no outgoing inclusion
edge from pi to pj in Gi−1. Since Gi−1 is obtained from G by successive node
removals and possible node label switches, it follows that the same is true in G,
thus proving condition a.

Let 1 ≤ i ≤ n. If pi ∈ N = dom−(ϕ), then by the definition of sgn operation
it is easy to see that pi has no overlap edge incident to any vertex pj with j > i. If
pi /∈ N , then pi is reduced in ϕ through sgppi . Therefore, by Definition 4, there is
only one vertex pj adjacent to pi in Gi−1 with an overlap edge where i < j. The
same clearly holds also in G, thus proving condition b.

Condition c can easily be obtained through induction on the number of vertices
of G.

To prove the reverse implication we use induction on the number of vertices
of graph G.

If n = 0, then p1 = m and degGo
(p1) = 0. By (c) we have σ(p1) = − and so,

G is trivially reducible through the empty reduction strategy. Assume now that
the claim holds for all graphs with at most k vertices, for some k ≥ 1. Let G be a
DOI graph with k + 1 vertices, that satisfies conditions a-c.

If p1 ∈ N , then by a-b it is either isolated or it has some incoming inclusion
edges; therefore degGo

(p1) = 0, σ(p1) = − and so, sgnp1 is applicable to G.
Consequently, based on the definition of sgn, G1 = sgnp1(G) is a DOI graph
with k vertices that satisfies conditions a-c. By the induction hypothesis G1 is
{Sgn, Sgp}-reducible and thus, so is G.

If p1 /∈ N , by condition a p1 has no outgoing inclusion edges and by b, there
is exactly one j > 1 such that there is an overlap edge between p1 and pj , and
by c, σ(p1) = +. Hence, p1 is reducible using sgp. Applying sgp does not add
any edges and it only changes the signing of vertex pj . Consequently, G1 =
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sgpp1(G) is a DOI graph with k vertices that satisfies conditions a-c. By induction
hypothesis, G1 is {Sgn, Sgp}-reducible and thus, so is G.

Claim 2. The right-hand side of the theorem’s statement holds if and only if con-
ditions a-c are satisfied.

Proof of Claim 2: We note immediately that condition c is identical to ii.
We first prove the direct implication. By iv P is an anti-topological ordering

of GN . Therefore for every i < j, there is no edge from pi to pj in GN . Since the
inclusion edges in GN are the inclusion edges in G, it follows that for all i < j
there is no inclusion edge pi → pj in G, proving a.

Let 1 ≤ i ≤ n. If pi ∈ N , then pi is the root of a rooted tree in the forest
Go. By iv, it follows that if there is any overlap edge incident to pi in GN , then
it is an outgoing overlap edge from pi. Therefore, for every j > i if there is an
overlap edge between pi and pj in G, then GN has an edge from pi to pj , which
contradicts P being an anti-topological ordering of GN . Hence, for pi ∈ N , there
is no overlap edge between pi and pj for any j > i. This proves the first part of b.

If pi ̸∈ N , then pi is not the root of a rooted tree in Go and so, there exists
a directed edge pj ⇒ pi in GN . Since P is an anti-topological ordering on the
vertices of GN , it follows that i < j. Assume now that there are j1 > j2 > i such
that there is an overlap edge between pj1 to pi and an overlap edge between pj2
and pi inG. This implies that pj1 ⇒GN

pi and pj2 ⇒GN
pi are edges ofGN , based

on the anti-topological ordering of its vertices. Observe now that pj1 and pj2 are
vertices in the same rooted tree of GN and so, there is a directed path ρ1 from its
root, say pr, to pj1 and a directed path ρ2 from pr to pj2 . Note however that ρ1, ρ2
and the edges pj1 ⇒GN

pi, pj2 ⇒GN
pi induce a cycle in Go, contradicting i. This

concludes the proof of the second part of b.
To prove the reverse implication, assume that Go has a cycle and let pi be

the vertex with the smallest index on that cycle. This implies that there are two
vertices j1, j2 > i such that there is an edge between pi and pj1 and an edge
between pi and pj2 . This contradicts b, thus proving i.

To prove iii, let T be a tree in Go and let pi be the vertex in T with the largest
index i. By b, if pi ̸∈ N ∪ {m}, there is an overlap edge between pi and a vertex
pj where j > i, a contradiction with our choice of i.

Assume now there are two vertices of T pi, pj ∈ N ∪ {m}, where i < j.
There is an overlap path, say ρ, in T from pi to pj: ρ = (pk1 , . . . , pkr), where
r ≥ 2, k1 = i and kr = j. By b, pi has no overlap edge incident to any vertex
with a larger index and so, k2 < k1. It also follows by b that pk2 can have at most
one overlap edge incident to a vertex with a larger index, which is pk1; therefore,
k3 < k2. Iterating this argument we conclude that j = kr < . . . < k2 < k1 = i,
contradicting that i < j.

To prove iv, let pi, pj be two vertices in G where i < j such that there is an
overlap edge pi ⇒GN

pj . Take i to be the smallest such index. Then by b, pi /∈ N .
By the construction of GN , it follows that there is another vertex pk such that
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pk ⇒GN
pi. If k > i, then pi is overlap-adjacent to two vertices with index larger

than i, which contradicts b. Thus, k < i; this however contradicts our choice of
i. Hence P is an anti-topological ordering of GN . It then follows that GN is also
acyclic.

3.3 {Sgp}-reducible graphs

Theorem 6. Let G = (V, σG, Eo, Ei) be a DOI graph with m ∈ V . G is {Sgp}-
reducible if and only if the following conditions are satisfied:

i. Go is a tree;

ii. For each vertex q ∈ G, degGo
(q) is even if and only if σG(q) = −;

iii. Let GN be the graph obtained from G by changing the orientation of all
its directed edges s ⇒ t where s is a child of t in the rooted forest Go.
Then GN is acyclic and each successful reduction in G corresponds to an
anti-topological ordering of GN .

Proof. Note that Theorem 5 implies an ordering in which the graph is reduced and
the vertices in N are the last ones to be reduced in every connected component of
the graph. Therefore N = ∅ in the case where a DOI graph is reduced using only
Sgp. Then the claim follows by Theorem 5.

Example 5. Let G be the DOI graph corresponding to actin I gene in Sterkiella
nova given in Figure 2(b). Since Go is not a forest, it follows by Theorem 5 that
G is not {Sgn, Sgp}-reducible. Let G′ be the induced subgraph of G given in
Figure 4(a); let N = {4, 5} and P = (2, 5, 4, 3). It follows by Theorem 5 that G′

is {Sgn, Sgp}-reducible with the successful strategy ϕ = sgp3 sgn4 sgn5 sgp2(G
′).

Note that G′ is not {Sgp}-reducible, since G′
o is not a tree and therefore, G′

does not satisfy the conditions in Theorem 6. On the other hand, but the subgraph
G′′ given in Figure 4(b) is {Sgp}-reducible.

The following problems concerning the reduction power of the simple opera-
tions remain open:

i. characterize {Sgd}-reducible DOI graphs;

ii. characterize {Sgn, Sgd}-reducible DOI graphs;

iii. characterize {Sgp, Sgd}-reducible DOI graphs;

iv. characterize {Sgn, Sgp, Sgd}-reducible DOI graphs.
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4 Confluent strategies on DOI graphs
It has been shown in [12] and [5] that the strategies using simple operations are
confluent for signed permutations and legal strings. In this section we show that
this result holds also for DOI graphs. The results here are similar to those of [12]
and [5] in the case of permutations and strings.

Definition 5. Let G = (V, σG, Eo, Ei) be a DOI graph. We say that the reduction
strategy ϕ for G is maximal if either ϕ is successful for G, or no operation is
applicable to ϕ(G). We say that two reduction strategies ϕ, ψ for G are confluent
if ϕ(G) ≡ ψ(G).

Lemma 7. Let G be a DOI graph and ϕ ∈ Sgn, ψ ∈ Sgn∪ Sgp∪ Sgd be two
operations applicable to G. Then both ϕ ◦ ψ and ψ ◦ ϕ to G are applicable and
ϕ ◦ ψ(G) = ψ ◦ ϕ(G).

Proof. The result follows easily since applying sgn on one vertex neither has any
effect on the signing of the other vertices nor adds any edges to influence the
applicability of any other operations.

Lemma 8. Let G be a DOI graph and ϕ, ψ ∈ Sgp be two distinct operations
applicable to G. Then either ϕ ◦ ψ(G) = ψ ◦ ϕ(G) or ϕ(G) ≡ ψ(G).

Proof. Let ϕ = sgpp and ψ = sgpq, p ̸= q. We consider the following two cases:

Case 1 If vertices p and q do not overlap, then clearly, by definition, ϕ ◦ ψ(G) =
ψ ◦ ϕ(G).

Case 2 If vertices p and q overlap, say p ⇒ q, then the only other edges incident
to p and q are incoming inclusion edges. It follows then that sgnq ◦ sgpp(G) =
sgnp ◦ sgpq(G), i.e., ϕ(G) ≡ ψ(G).

Lemma 9. Let G be a DOI graph and ϕ, ψ ∈ Sgd be two distinct operations
applicable to G. Then either ϕ ◦ ψ(G) = ψ ◦ ϕ(G) or ϕ(G) ≡ ψ(G).

Proof. Let ϕ = sgdp,q and ψ = sgdr,s. If {p, q} ̸= {r, s}, clearly ϕ ◦ ψ(G) =
ψ ◦ ϕ(G). Consider now the case where |{p, q} ∩ {r, s}| = 1. Note that if p = r
or q = s, then sgdp,q and sgdr,s are not applicable simultaneously to G. The
followng two cases are then possible:

Case 1 q = r, p⇒ q and q ⇒ s,

Case 2 p = s, p⇒ q and r ⇒ p.

11



It is enough to discuss here only Case 1, as the other is symmetric. Denote
G′ = sgdp,q(G) and G′′ = sgdq,s(G). Then outSeto(p) \ {q} = outSeto(q) and
outSeto(q)\{s} = outSeto(s). As a result outSeto(s) in G′ is equal to outSeto(p)
in G′′. Similar results hold true for the sets of outgoing inclusion edges and in-
coming overlap and inclusion edges. Hence, ϕ(G) ≡ ψ(G).

Lemma 10. Let G be a DOI graph and ϕ ∈ Sgp, ψ ∈ Sgd be two operations
applicable to G. Then ϕ ◦ ψ(G) = ψ ◦ ϕ(G).

Proof. Let ϕ = sgpp and ψ = sgpq,r. If p /∈ {q, r}, then clearly, by definition,
ϕ ◦ ψ(G) = ψ ◦ ϕ(G).

Let p ∈ {q, r}. Since sgpp is applicable to G, p is a positive vertex in G.
But sgdq,r is also applicable to G and so, both q and r should be negative in G, a
contradiction.

Theorem 11. Let G be a DOI graph and ϕ, ψ be two maximal strategies for G.
Then ϕ and ψ are confluent.

Proof. We prove by induction on the number of vertices of G.
The case when G has only one vertex is trivial. Suppose now the claim holds

for all DOI graphs with |V | ≤ k.
Let G be a DOI graph with |V | = k + 1 and ϕ = ϕm ◦ . . . ◦ ϕ2 ◦ ϕ1, ψ =

ψn ◦ . . . ◦ ψ2 ◦ ψ1. If ϕ1 = ψ1, the the claim follows by the induction hypothesis.
Assume that they are distinct, but both applicable to G. By Lemmas 7-10, either
ϕ1 ◦ ψ1(G) = ψ1 ◦ ϕ1(G) or ϕ1(G) ≡ ψ1(G). The latter case is concluded based
on Lemma 3.

If ϕ1◦ψ1(G) = ψ1◦ϕ1(G), then by induction hypothesis all maximal strategies
on ϕ1(G) are confluent; consequently, all maximal strategies for ψ1 ◦ ϕ1(G) are
also confluent. Similarly, all strategies on ψ1(G) are confluent; consequently,
all maximal strategies on ϕ1 ◦ ψ1(G) are also confluent. Since ϕ1 ◦ ψ1(G) =
ψ1 ◦ ϕ1(G), it follows that all maximal strategies on ϕ1(G) are confluent with all
maximal strategies on ψ1(G), concluding the proof.

Corollary 12. Let G be a DOI graph. Then either all its maximal strategies are
successful, or they are all unsuccessful and in this case, the resulting graphs have
the same structure.
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(a) The molecule folds
as a loop to align the
pointers.

(b) Enzymes cut on the
pointer sites.

(c) As a result, one cir-
cular molecule gets ex-
cised from the original
DNA molecule.

hi

(d) The molecule folds
as a hairpin to align the
pointers.

(e) Enzymes cut on the
pointer sites.

(f) As a result, a segment
of the molecule gets in-
verted.

dlad

(g) The molecule folds
as a double loop to align
the pointers.

(h) Enzymes cut on the
pointer sites.

(i) As a result, two seg-
ments of the molecule
get inter-changed.

Figure 1: The three operations of the intramolecular model for gene assembly in
ciliates.
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Figure 2: (a) The OI graph corresponding to actin I gene in Sterkiella nova, (b)
the DOI graph corresponding to actin I gene in Sterkiella nova.
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Figure 3: (a) The DOI graph G corresponding to actin I gene in Sterkiella
nova; (b) G′ = sgd6,7(G); (c) G′′ = sgd8,9(G

′); (d) G′′′ = sgp2(G
′′); (e)

G4 = sgn4 sgn5(G
′′′); (f) G5 = sgp3(G

4).
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Figure 4: (a) An {Sgn, Sgp}-reducible subgraph of the DOI graph corresponding
to actin I gene in Sterkiella nova. (b) An {Sgp}-reducible subgraph of the DOI
graph corresponding to actin I gene in Sterkiella nova.
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