
Anton Tarasyuk | Inna Pereverzeva | Elena Troubitsyna |
Timo Latvala | Laura Nummila

Formal Development and Assessment of a
Reconfigurable On-board Satellite System

TUCS Technical Report

No 1038, February 2012

Formal Development and Assessment of a
Reconfigurable On-board Satellite System

Anton Tarasyuk

Åbo Akademi University, Department of Computer Science

Turku Centre for Computer Science

anton.tarasyuk@abo.fi

Inna Pereverzeva
Åbo Akademi University, Department of Computer Science,

Turku Centre for Computer Science

inna.pereverzeva@abo.fi

Elena Troubitsyna

Åbo Akademi University, Department of Computer Science

elena.troubitsyna@abo.fi

Timo Latvala
Space Systems Finland, Espoo, Finland

timo.latvala@ssf.fi

Laura Nummila
Space Systems Finland, Espoo, Finland

laura.nummila@ssf.fi

TUCS Technical Report

No 1038, February 2012

Abstract

Ensuring fault tolerance of satellite systems is critical for achieving goals
of the space mission. Since the use of redundancy is restricted by the size
and the weight of the on-board equipments, the designers need to rely on
dynamic reconfiguration in case of failures of some components. In this paper
we propose a formal approach to development of dynamically reconfigurable
systems in Event-B. Our approach allows us to build the system that can
discover possible reconfiguration strategy and continue to provide its services
despite failures of its vital components. We integrate probabilistic verification
to evaluate reconfiguration alternatives. Our approach is illustrated by a case
study from aerospace domain.

Keywords: Formal modelling, fault tolerance, Event-B, refinement, proba-
bilistic verification.

TUCS Laboratory

Distributed Systems Laboratory

1 Introduction
Fault tolerance is an important characteristics of on-board satellite systems.
Usually fault tolerance is achieved via redundancy. However, the use of
(component) redundancy in spacecraft is restricted by the weight and volume
constraints. System developers perform a careful cost-benefit analysis to
minimise the use of spare modules yet achieve the required level of system
reliability.

Nevertheless, despite such an analysis, Space System Finland has recently
experienced a double-failure problem with a system that samples and pack-
ages scientific data in one of the operating satellites. The system consisted of
two identical modules. When one of the subcomponents of the first module
failed the system switched to the use of the second module. However, after
a while a subcomponent of the spare has also failed, so it became impossible
to produce scientific data. To not lose the entire mission, the company has
invented solution that relied on healthy subcomponents of both modules and
complex communication mechanism to restore functioning and resume pro-
duction of scientific data. Obviously, a certain amount of data has been lost
before the repair was deployed. This motivated our work on exploring proac-
tive solutions for fault tolerance, i.e., planning and evaluating of scenarios
implementing a seamless reconfiguration using a fine-grained redundancy.

In this paper we propose a formal approach to modelling and assessment
of on-board reconfigurable systems. We generalise the ad-hoc solution cre-
ated by the Space Systems Finland and propose an approach to formal devel-
opment and assessment of the fault tolerant satellite systems. The essence
of the modelling side of our approach is to start from abstract modelling
functional goals that the system should achieve to remain operational and
derive reconfigurable architecture by refinement in Event-B.

Event-B is a formal top-down development approach to
correct-by-construction system development [2]. Currently, it is actively used
within the EU project Deploy [10] to model dependable systems from vari-
ous domain including space, automation, rail-ways and business information
systems. The rigorous refinement process allows us to establish the precise
relationships between component failures and goal reachability. The derived
system architecture should not only satisfy functional requirements but also
achieve its reliability objective. Moreover, since reconfiguration procedure
requires additional inter-component communication, the developers should
also verify that system performance remains acceptable. At the assessment
site of our approach, we rely on the probabilistic extension of Event-B to
verify reliability and performance properties. It is performed using PRISM
model checker [12].

The main novelty of our work is in proposing an integrated approach to
formal derivation of reconfigurable system architectures and probabilistic as-
sessment of their reliability and performance. We believe that the proposed

1

approach facilitates early exploration of design space and helps to build more
redundancy-frugal systems that yet meet the desired reliability and perfor-
mance requirements.

2 Reconfigurable Fault Tolerant Systems

2.1 Case Study: Data Processing Unit

As we have already mentioned in the previous section, our work is inspired
by a solution proposed to circumvent double failure occurred in a currently
operational on-board satellite system. The architecture of this system is
similar the Data Processing Unit (DPU) – a subsystem of European Space
Agency mission BepiColombo [3] that is under development now. Space Sys-
tems Finland is one of the providers for BepiColombo. The main goal of the
mission is to carry various scientific measures to explore the planet Mercury.
DPU is an important part of the Mercury Planetary Orbiter. It consists of
four independent components (computers) responsible for receiving and pro-
cessing data from four sensor units: SIXS-X (X-ray spectrometer), SIXS-P
(particle spectrometer), MIXS-T (telescope) and MIXS-C (collimator).

The behaviour of DPU is managed by telecommands (TCs) received from
the spacecraft and stored in a TC pool, which is structured as a circular
buffer. With a predefined rate DPU periodically polls the buffer, decodes
TC and performs the required actions. Processing of each TC results in pro-
ducing telemtery (TM) that is stored in a TM pool. Both TC and TM pack-
ages follow a strict syntax defined by the European Space Agency’s Packet
Utilisation Standard [14]. As a result of decoding TC, DPU might produce
a housekeeping report, switch to some mode or initiate/continue production
of scientific data. Correspondingly, TM would constrain either housekeeping
data, or acknowledgement of mode transition or scientific data. The main
purpose of DPU is to ensure a required rate of producing TM containing
scientific data. In this paper we focus on analysing this particular aspect of
system behaviour. Hence in the rest of the paper TCs will correspond to
telecommands requiring production of scientific data, while TM will desig-
nate packages containing scientific data.

2.2 Goal-Oriented Reasoning about Fault Tolerance

In this paper we use the notion of goal as a basis for reasoning about fault tol-
erance. Goals – the functional and non-functional objectives that the system
should achieve – are often used to structure the requirements of dependable
systems [11, 17].

Let G be a predicate that defines a goal and M be a system model. The
system design should ensure that eventually goal is reached. Hence, while
verifying the system, we should establish that

M |= ✸G.

2

The main idea of goal-oriented development is to decompose the high-
level system goals into a set of subgoals. Essentially, subgoals define the
intermediate stages of achieving a high-level goal. In the process of goal
decomposition we associate system components with tasks – the lowest-level
subgoals. A component is associated with a task if its functionality enables
establishing the goal defined by the corresponding task.

For instance, in this paper we consider “Produce Scientific TM” as a goal
of DPU. DPU sequentially enquires each of its four components to produce
its part of scientific data. Each component acquires fresh scientific data
from the corresponding sensor unit (SIXS-X, SIXS-P, MIXS-T or MIXS-C),
preprocesses it and makes available to DPU that eventually forms the entire
TM package. Thus, the goal can be decomposed into four similar tasks
“Sensor data production”.

In general, we say that the goal G can be decomposed into a finite set of
tasks:

T = {taskj | j ∈ 1..n ∧ n ∈ N1},

Let also C be a finite set of components capable of performing some tasks
form T :

C = {compj | j ∈ 1..m ∧ m ∈ N1},

where N1 is the set of positive integers. Then the relation Φ defined below
associates components with the tasks:

Φ ∈ T ↔ C, such that ∀t ∈ T ·∃c ∈ C ·Φ(t, c),

where ↔ designates a binary relation.
To reason about fault tolerance, we should take into account component

unreliability. A failure of a component means that it cannot perform its
associated task. Obviously, this might prevent system from reaching the
targeted goals and as a consequence achieving the required level of reliabil-
ity. Fault tolerance mechanisms employed to mitigate results of component
failures rely on various forms of component redundancy. Usually, spacecraft
have stringent limitations on the size and weight of the on-board equipment,
hence high degree of redundancy is rarely present. Typically, components
are either duplicated or triplicated. Let us consider a duplicated system that
consists of two identical DPUs – DPUA and DPUB. As it was explained
above, each DPU contains four components responsible for controlling the
corresponding sensor.

Traditionally, the satellite systems are designed to implement the follow-
ing simple redundancy scheme. Initially DPUA is active, while DPUB is a
cold spare. DPUA allocates tasks on its components to achieve the system
goal G – processing of TC and producing TM. When some lower-level com-
ponent of DPUA fails, DPUB is activated to achieve the goal G. Failure of
DPUB results in failure of the overall system. However, let us observe that
even though none of the DPUs can accomplish the overall goal G on its own,

3

it might be the case that the components that remained operational can per-
form the entire set of tasks required to reach G. This observation allows us
to define the following dynamic reconfiguration strategy.

Initially DPUA is active and is assigned to reach the goal G. If some of its
components fails resulting in a failure to execute one of four scientific tasks
(let it be taskj), the spare DPUB is activated and DPUA is deactivated.
DPUB performs the taskj and the consecutive tasks required to reach G. It
becomes fully responsible for achieving the goal G until some of its component
fails. In this case, to remain operational, the system performs dynamic recon-
figuration. Namely, it reactivates DPUA and tries to assign the failed task to
the corresponding component of DPUA. If such a component is operational
then DPUA continues to execute the subsequent tasks until it encounters a
failed component. Then the control is passed to DPUB again. Obviously,
the overall system stays operational until two identical components of both
DPUs have failed.

We generalise the architecture of DPU by stating that essentially a system
consists of a number of modules and each module consists of n components:

C = Ca ∪ Cb, where Ca = {a compj | j ∈ 1..n ∧ n ∈ N1} etc.

Each module relies on its components to achieve the tasks required to ac-
complish G. Hence we associate the corresponding tasks from the set T with
these components.

An introduction of redundancy allows us to associate not a single but
several components with each task. We reformulate the goal reachability
property as follows: a goal is reachable if there is at least one operational
component associated with each task. Formally, it can be specified as:

M |= ✷ (Os ⇒ ✸G), where Os ≡ ∀t ∈ T · (∃c ∈ C ·Φ(t, c) ∧ O(c))

and O is a predicate over the set of components C such that O(c) evaluates
to TRUE if and only if the component c is operational.

2.3 Probabilistic Assessment

If a duplicated system with the dynamic reconfiguration achieves the desired
reliability level, it might allow the designers to avoid module triplication.
However, it also increases the amount of intercomponent communication that
leads to decreasing the system performance. Hence, while deciding on fault
tolerance strategy, it is important to consider not only reachability of func-
tional goals but also their performance and reliability aspects.

In engineering, both reliability and performance are system quality at-
tributes that are usually measured quantitatively . Specifically, reliability is
the probability that the system/component remains operational under given
conditions for a certain time interval. In terms of goal reachability the system
remains operational until it is capable of reaching targeted goals. Hence to

4

guarantee that system is capable of performing a required functions within
a time interval t is it enough to verify that

M |= ✷
≤t Os. (1)

However, due to possible component failures we usually cannot guarantee the
absolute preservation of (1). Instead, to assess the reliability of a system, we
need to show that the probability of preserving the property (1) is sufficiently
high, i.e., it exceeds the required threshold. On the other hand, the system
performance is a reward-based property that can be measured by the number
of successfully achieved goals within a certain time period.

To quantitatively verify these quality attributes we formulate the follow-
ing CSL (Continuous Stochastic Logic) formulas [9]:

P=?{G ≤ t Os} and R(|goals|)=?{C ≤ t }.

The formulas above are specified using PRISM notations. The operator P is
used to refer to the probability of an event occurrence, G is an analogue of
✷, R is used to analyse the expected values of rewards specified in a model,
while C specifies that the reward should be cumulated only up to a given
time bound. Thus, the first formula is used to analyse how likely the system
remains operational as time passes, while the second one is used to compute
the expected number of achieved goals cumulated by the system over t time
units.

In this paper we rely on formal modelling in Event-B to formally define
the architecture of a dynamically reconfigurable system, and a probabilistic
extension of Event-B to create models for assessing system reliability and
performance. In the next section we briefly describe Event-B and its proba-
bilistic extension.

3 Modelling in Event-B and Probabilistic

Analysis

3.1 Modelling and Refinement in Event-B

The Event-B formalism – a variation of the B Method [1] – is a state-
based formal approach that promotes the correct-by-construction develop-
ment paradigm and formal verification by theorem proving. In Event-B, a
system model is specified using the notion of an abstract state machine [2].
An abstract state machine encapsulates the model state represented as a col-
lection of variables and defines operations on the state, i.e., it describes the
behaviour of the modelled system. Usually, a machine has an accompany-
ing component, called context, which may include user-defined carrier sets,
constants and their properties given as a list of model axioms. In Event-B,
the model variables are strongly typed by the constraining predicates. These

5

predicates and the other important properties that must be preserved by the
model constitute model invariants (I).

The dynamic behaviour of the system is defined by the set of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, the guard Ge is a
predicate over the local variables of the event and the state variables of the
system. The body of the event is defined by the next-state relation Re. In
Event-B, Re is defined by a multiple (possibly nondeterministic) assignment
over the system variables. The guard defines the conditions under which
the substitution can be performed, i.e., when the event is enabled. If several
events are enabled at the same time, any of them can be chosen for execution
nondeterministically. If an event does not have local variables, it can be
described simply as:

e =̂ when Ge then Re end.

Event-B employs a top-down refinement-based approach to system de-
velopment. Development starts from an abstract system specification that
nondeterministically models the most essential functional requirements. In a
sequence of refinement steps we gradually reduce nondeterminism and intro-
duce detailed design decisions. In particular, we can add new events, split
events as well as replace abstract variables by their concrete counterparts,
i.e., perform data refinement. When data refinement is performed, we should
define gluing invariants as a part of the invariants of the refined machine.
They define the relationship between the abstract and concrete variables.
The proof of data refinement is often supported by supplying witnesses – the
concrete values for the replaced abstract variables and parameters. Witnesses
are specified in the event clause with.

The consistency of Event-B models, i.e., verification of well-formedness
and invariant preservation as well as correctness of refinement steps are for-
mally demonstrated by discharging the relevant proof obligations generated
by the Rodin platform [13]. The platform provides an automated tool sup-
port for proving.

3.2 Augmenting Event-B Models with Probabilities

Next we briefly describe the idea behind translating Event-B into contin-
uous time Markov chains – CTMC (the details can be found in [16]). To
achieve this, we augment all events of the model with the information about
the probability and duration of all the actions that may occur during their
execution, and refine them by their probabilistic counterparts.

Let Σ be a state space of an Event-B model defined by all possible values
of the system variables. We consider an event e as a binary relation on Σ,

6

i.e., for any two states σ, σ′ ∈ Σ:

e(σ, σ′)
def
= Ge(σ) ∧ Re(σ, σ′).

Definition 1. The behaviour of an Event-B machine is fully defined by
a transition relation →:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ → σ′
,

where before(e) = {σ ∈ Σ | I(σ) ∧ Ge(σ)}, Eσ = {e ∈ E | σ ∈ before(e)}

and
after(e) = {σ′ ∈ Σ | I(σ′) ∧ (∃σ ∈ Σ · I(σ) ∧ Ge(σ) ∧ Re(σ, σ′))}.

Furthermore, let us adopt the notation λe(σ, σ′) to denote the (exponen-
tial) transition rate from σ to σ′ via the event e, where σ ∈ before(e) and
Re(σ, σ′). By augmenting all the event actions with transition rates, we can
respectively modify Definition 3.2 as follows.

Definition 2. The behaviour of a probabilistically augmented Event-B

machine is defined by a transition relation
Λ
−→:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ
Λ
−→ σ′

,

where Λ =
∑

e∈Eσ

λe(σ, σ′).

Definition 3.2 allows us to define the semantics of a probabilistically aug-
mented Event-B model as a probabilistic transition system with the state

space Σ, transition relation
Λ
−→ and the initial state defined by model initial-

isation (for probabilistic models we require the initialisation to be determin-
istic). Clearly, such a transition system corresponds to a CTMC.

In the next section we demonstrate how to formally derive an Event-B
model of the architecture of a reconfigurable system.

4 Deriving Fault Tolerant Architectures by

Refinement in Event-B

The general idea behind our formal development is to start from an abstract
goal modelling, decompose it into tasks and introduce an abstract represen-
tation of the goal execution flow. Such a model can be refined into different
fault tolerant architectures. Subsequently these models are augmented with
probabilistic data and used for the assessment.

7

4.1 Modelling Goal Reaching

Goal Modelling. Our initial specification abstractly models the process
of reaching the goal. The progress of achieving the goal is modelled by
the variable goal that obtains values from the enumerated set STATUS =
{not reached, reached, failed}. Initially, the system is not assigned any goals
to accomplish, i.e., the variable idle is equal TRUE. When the system be-
comes engaged in establishing the goal, idle obtains value FALSE as mod-
elled by the event Activation. In the process of accomplishing the goal, the
variable goal might eventually change its value from not reached to reached
or failed, as modelled by the event Body. After the goal is reached the sys-
tem becomes idle, i.e., a new goal can be assigned. The event Finish defines
such a behaviour. We treat the failure to achieve the goal as a permanent
system failure. It is represented by the infinite stuttering defined in the event
Abort.

Activation b=

when idle = TRUE

then idle := FALSE

end

Body b=

when idle = FALSE ∧ goal = not reached

then goal :∈ STATUS

end

Finish b=

when idle = FALSE ∧ goal = reached

then goal, idle := not reached, TRUE

end

Abort b=

when goal = failed

then skip

end

Goal Decomposition. The aim of our first refinement step is to define
the goal execution flow. We assume that the goal can be decomposed into n
tasks. It can be achieved by a sequential execution one task after another.
For simplicity, we assume that the id of each task is defined by the order of its
execution. Initially, when a goal is chosen, none of the tasks is executed, i.e.,
the state of each task is “not defined” (designated by the constant value ND).
After the execution, the state of a task might be changed to success or failure,
represented by the constants OK and NOK correspondingly. Our refinement
step is essentially data refinement that replaces the abstract variable goal
with the new variable task defined as a total function between the task id
and its state:

task ∈ 1..n → STATE.

The events of the refined model can be found in Appendix A. They represent
the process of sequential selection of one task after another until either all
tasks are executed, i.e., the goal is reached, or execution of some task fails,
i.e., goal is not achieved. Correspondingly, the guards ensure that either the
goal reaching has not commenced yet or the execution of all previous task
has been successful. The body of the events nondeterministically changes
the state of the chosen task to OK or NOK. The following invariants define
the properties of the task execution flow:

∀l · l ∈ 2 .. n ∧ task(l) 6= ND ⇒ (∀i · i ∈ 1 .. l − 1 ⇒ task(i) = OK),

∀l · l ∈ 1 .. n − 1 ∧ task(l) 6= OK ⇒ (∀i · i ∈ l + 1 .. n ⇒ task(i) = ND).

8

They state that the goal execution can progress, i.e., a next task can be
chosen for execution, only if none of the previously executed tasks failed and
the subsequent tasks have not been executed yet.

From the requirements perspective, the refined model should guarantee
that the system level goal remains achievable. This is ensured by the gluing
invariants that establish the relationship between the abstract goal and tasks
as shown below:

task[1 .. n] = {OK} ⇒ goal = reached,

(task[1 .. n] = {OK,ND} ∨ task[1 .. n] = {ND}) ⇒ goal = not reached,

(∃i · i ∈ 1 .. n ∧ task(i) = NOK) ⇒ goal = failed.

Introducing Abstract Communication. The aim of our next refinement
step is to introduce an abstract model of communication. We define a new
variable ct that stores the id of the last achieved task. The value of ct is
checked every time when a new task is to be chosen for execution. If task
execution succeeds then ct is incremented. Failure to execute the task leaves
ct unchanged and results only in the change of the status of the failed task to
NOK. Essentially the refined model introduces an abstract communication
via shared memory. The following gluing invariants allow us to prove the
refinement:

ct > 0 ⇒ (∀i · i ∈ 1 .. ct ⇒ task(i) = OK),

ct < n ⇒ task(ct + 1) ∈ {ND,NOK},

ct < n − 1 ⇒ (∀i · i ∈ ct + 2 .. n ⇒ task(i) = ND).

They relate the values of ct with the id’s and the statuses of the tasks.
As we discussed in Section 2, each task is executed by a separate com-

ponent of a high-level module. Therefore, by substituting the id of a task
with the id of the component executing it, i.e., performing a trivial data
refinement with the gluing invariant

∀i ∈ 1..n · task(i) = comp(i),

we define a non-redundant architecture of the system. In other words, our
current model implements the relation Φ as a function. Next we demon-
strate how to introduce a fault tolerant architecture with different forms of
redundancy. This corresponds to defining Φ as a relation. The use of for-
mal modelling in Event-B allows us to mathematically prove that the system
architecture specified by Φ is preserved by the system model. We demon-
strate how to introduce either a triplicated architecture without a dynamic
reconfiguration or duplicated architecture with a dynamic reconfiguration by
refinement.

4.2 Introducing Reconfiguration Strategies
To define triplicated architecture with static reconfiguration, we define three
identical modules A, B and C. Each module consists of n components exe-

9

cuting corresponding tasks. We refine the abstract variable task by the three
new variables a comp, b comp and c comp:

a comp ∈ 1..n → STATE, b comp ∈ 1..n → STATE, c comp ∈ 1..n → STATE.

To associate the tasks with the components of each module, we formulate a
number of gluing invariants that essentially specify the relation Φ. Some of
these invariants are shown below:

∀i · i ∈ 1 .. n ∧ module = A ∧ a comp(i) = OK ⇒ task(i) = OK,

module = A ⇒ (∀i · i ∈ 1 .. n ⇒ b comp(i) = ND ∧ c comp(i) = ND),

∀i · i ∈ 1 .. n ∧ module = A ∧ a comp(i) 6= OK ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧ module = B ∧ b comp(i) 6= OK ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧ module = C ⇒ c comp(i) = task(i),

module = B ⇒ (∀i · i ∈ 1 .. n ⇒ c comp(i) = ND).

Here, a new variable module ∈ {A, B, C} stores the id of the currently active
module. The complete list of invariants can be found in Appendix A.

An alternative way to perform this refinement step is to introduce a du-
plicated architecture with dynamic reconfiguration. In this case, we assume
that our system consists of two modules – A and B – defined in the same
way as discussed above. We replace the abstract variable task with two new
variables a comp and b comp. Below we give an excerpt from the definition
of the gluing invariants:

module = A ∧ ct > 0 ∧ a comp(ct) = OK ⇒ task(ct) = OK,

module = B ∧ ct > 0 ∧ b comp(ct) = OK ⇒ task(ct) = OK,

∀i · i ∈ 1 .. n ∧ a comp(i) = NOK ∧ b comp(i) = NOK ⇒ task(i) = NOK,

∀i · i ∈ 1 .. n ∧ a comp(i) = NOK ∧ b comp(i) = ND ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧ b comp(i) = NOK ∧ a comp(i) = ND ⇒ task(i) = ND.

Essentially, the invariants define the behavioural patterns for executing the
tasks according to dynamic reconfiguration scenario described in Section 2.

Since our goal is to study the fault tolerance aspect of the system ar-
chitecture, in our modelling we have deliberately abstracted away from the
representation of the details of the system behaviour. A significant number
of functional requirements is formulated as gluing invariants in the Event-B
model. As a result, to verify correctness of the models we had to discharge
more than 500 proof obligations. Around 90% of them have been proved au-
tomatically by the Rodin platform and the rest have been proved manually
in the Rodin interactive proving environment.

In this section, we have described the development for a generic system.
However, such a development can be easily instantiated to formally derive

10

fault tolerant architectures of DPU. The goal of DPU is to handle the sci-
entific TCs by producing TM. This goal is decomposed into four tasks that
define the production of data by the corresponding sensor units – SIXS-X,
SIXS-P, MIXS-T and MIXS-C. Thus, for such a model we have four tasks
(n = 4) and each task is independently handled by the corresponding com-
puting component of DPU. Furthermore, the high-level modules A, B and
C correspond to the three identical DPUs that control handling of scien-
tific TCs – DPUA, DPUB and DPUC , while functions a comp, b comp and
c comp represent statuses of their internal components.

From the functional point of view, both alternatives of the last refinement
step are equivalent. Indeed, each of them models the process of reaching
the goal by a fault tolerant system architecture. In the next section we will
present a quantitative assessment of their reliability and performance aspects.

5 Quantitative Assessment of Reconfiguration

Strategies

In this section we assess the proposed fault tolerant architectures – triplicated
with static reconfiguration and duplicated with the dynamic reconfiguration.
The scientific mission of BepiColombo on the orbit of the Mercury will last for
one year with possibility to extend this period for another year. Therefore, we
should assess the reliability of both architectural alternatives for this period
of time. Clearly, the triplicated DPU is able to tolerate up to three DPU
failures within the two-year period, while the use of a duplicated DPU with
a dynamic reconfiguration allows the satellite to tolerate from one (in the
worst case) to four (in the best case) failures of the components.

Obviously, the duplicated architecture with a dynamic configuration min-
imises volume and the weight of the on-board equipment. However, the dy-
namic reconfiguration requires additional inter-component communication
that slows down the process of producing TM. Therefore, we need to care-
fully analyse the performance aspect as well. Essentially, we need to show
that the duplicated system with the dynamic reconfiguration can also provide
a sufficient amount of scientific TM within the two-year period.

To perform the probabilistic assessment of reliability and performance,
we rely on two types of data:

• probabilistic data about lengths of time delays required by DPU compo-
nents and sensor units to produce the corresponding parts of scientific
data

• data about occurrence rates of possible failures of these components

It is assumed that all time delays are exponentially distributed. We re-
fine the Event-B specifications obtained at the final refinement step by their

11

Table 1: Rates (time is measured by minutes)

TC access rate when the system is idle λ 1

12·60
SIXS-P work rate α2

1

30

TM output rate when a TC is handled µ 1

20
SIXS-P failure rate β2

1

106

Spare DPU activation rate (power on) δ 1

10
MIXS-T work rate α3

1

30

DPUs “communication” rate τ 1

5
MIXS-T failure rate β3

1

9·107

SIXS-X work rate α1
1

60
MIXS-C work rate α4

1

90

SIXS-X failure rate β1
1

8·107 MIXS-C failure rate β4
1

6·107

probabilistic counterparts. This is achieved via introducing probabilistic in-
formation into events and replacing all the local nondeterminism with the
(exponential) race conditions. Such a refinement relies on the model trans-
formation presented in Section 3. As a result, we represent the behaviour
of Event-B machines by CTMCs. This allows us to use probabilistic sym-
bolic model checker PRISM to evaluate reliability and performance of the
proposed models.

The PRISM specifications are presented in Appendix B. Due to limita-
tions of the PRISM modelling language (e.g., it does not provide support
for defining relations), they slightly differ form the corresponding Event-B
machines. The guidelines for Event-B to PRISM model transformation can
be found in our previous work [15].

The results of quantitative verification performed by PRISM show that
with probabilistic characteristics of DPU presented, in Table 11, both recon-
figuration strategies lead to a similar level of system reliability and perfor-
mance with insignificant advantage of the triplicated DPU. Thus, the reli-
ability levels of both systems within the two-year period are approximately
the same with the difference of just 0.003 at the end of this period (0.999
against 0.996). Furthermore, the use of two DPUs under dynamic reconfig-
uration allows the satellite to handle only 2 TCs less after two years of work
– 1104 against 1106 returned TM packets in the case of the triplicated DPU.
Clearly, the use of the duplicated architecture with dynamic reconfiguration
to achieve the desired levels of reliability and performance is optimal for the
considered system.

Finally, let us remark that the goal-oriented style of the reliability and
performance analysis has significantly simplified the assessment of the archi-
tectural alternatives of DPU. Indeed, it allowed us to abstract away from
the configuration of input and output buffers, i.e., to avoid modelling of the
circular buffer as a part of the analysis.

1Provided information may differ form the characteristics of the real components. It is
used merely to demonstrate how the required comparison of reliability/performance can
be achieved

12

6 Conclusions and Related Work
In this paper we proposed a formal approach to development and assessment
of fault tolerant satellite systems. We made two main technical contribu-
tions. On the one hand, we defined the guidelines for development of the
dynamically reconfigurable systems. On the other hand, we demonstrated
how to formally assess reconfiguration strategy and evaluate whether the cho-
sen fault tolerance mechanism fulfils reliability and performance objectives.
The proposed approach was illustrated by a case study – development and as-
sessment of the reconfigurable DPU. We believe that our approach not only
guarantees correct design of complex fault tolerance mechanisms but also
facilitates finding suitable trade-offs between reliability and performance.

A large variety of aspects of the dynamic reconfiguration has been studied
in the last decade. For instance, Wermelinger et al. [19] proposed a high-level
language for specifying the dynamically reconfigurable architectures. They
focus on modifications of the architectural components and model reconfig-
uration by the algebraic graph rewriting. In our work, we focused on the
functional rather than structural aspect of reasoning about reconfiguration.

Significant research efforts are invested in finding suitable models of trig-
gers for run-time adaptation. Such triggers monitor performance [5] or in-
tegrity [18] of the application and initiate reconfiguration when the desired
characteristics are not achieved. In our work we perform the assessment of
reconfiguration strategy at the development phase that allows us to rely on
existing error detection mechanisms to trigger dynamic reconfiguration.

A number of researchers investigate self* techniques for designing adap-
tive systems that autonomously achieve fault tolerance, e.g., see [6, 7]. How-
ever, these approaches are characterised by a high degree of uncertainty in
achieving fault tolerance that is unsuitable for the satellite systems.

An extensive body of research investigates quality of service characteris-
tics of dynamically reconfigurable service-oriented systems. Among the most
prominent works in the area is the approach proposed by Calinescu et al. [4].
It aims at defining the optimal configuration in terms of quality of service
by assessing quality of service attributes of various service component that
are available at run-time. We use the similar probabilistic verification tech-
niques to assess reliability and performance. However, the satellite systems
are more deterministic, i.e., the set of component is predefined. This allows
us to assess the optimal reconfiguration strategy at the development phase
and simplify reconfiguration process.

The work [8] proposes an interesting conceptual framework for estab-
lishing a link between changing environmental conditions, requirements and
system-level goals. In our approach we were more interested in studying a
formal aspect of dynamic reconfiguration.

In our future work we are planning to further study the properties of
dynamic reconfiguration. It particular, it would be interesting to investigate

13

dynamic reconfiguration in the presence of parallelism and complex compo-
nent interdependencies.

14

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 2005.

[2] J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[3] BepiColombo. ESA Media Center, Space Science, online at
http://www.esa.int/esaSC/SEMNEM3MDAF 0 spk.html.

[4] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli. Dynamic QoS Management and Optimization in Service-Based
Systems. volume 37, pages 387–409. IEEE Computer Society, 2011.

[5] M. Caporuscio, A. Di Marco, and P. Inverardi. Model-Based System
Reconfiguration for Dynamic Performance Management. J. Syst. Softw.,
80:455–473, 2007.

[6] P.A. de C. Guerra, C.M.F. Rubira, and R. de Lemos. A Fault-Tolerant
Software Architecture for Component-Based Systems. In Architecting
Dependable Systems, pages 129–143. Springer, 2003.

[7] R. de Lemos, P.A. de Castro Guerra, and C.M.F. Rubira. A Fault-
Tolerant Architectural Approach for Dependable Systems. Software,
IEEE, 23(2):80–87, 2006.

[8] H.J. Goldsby, P. Sawyer, N. Bencomo, B.H.C. Cheng, and D. Hughes.
Goal-Based Modeling of Dynamically Adaptive System Requirements.
In ECBS 2008, Engineering of Computer Based Systems, pages 36–45,
2008.

[9] L. Grunske. Specification Patterns for Probabilistic Quality Properties.
In ICSE 2008, International Conference on Software Engineering, pages
31–40. ACM, 2008.

[10] Industrial Deployment of System Engineering Methods Providing High
Dependability and Productivity (DEPLOY). IST FP7 IP Project, online
at http://www.deploy-project.eu/.

[11] T. P. Kelly and R. A. Weaver. The Goal Structuring Notation – A
Safety Argument Notation. In The Dependable Systems and Networks
2004 Workshop on Assurance Cases, 2004.

[12] G. Norman M. Kwiatkowska and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In CAV’11, International Conference
on Computer Aided Verification, pages 585–591. Springer, 2011.

15

[13] Rodin. Event-B Platform, online at http://www.event-b.org/.

[14] Space Engineering: Ground Systems and Operations – Telemetry and
Telecommand Packet Utilization. ECSS-E-70-41A. ECSS Secretariat,
30.01.2003, online at http://www.ecss.nl/.

[15] A. Tarasyuk, E. Troubitsyna, and L. Laibinis. Quantitative Reason-
ing about Dependability in Event-B: Probabilistic Model Checking Ap-
proach. In Dependability and Computer Engineering: Concepts for
Software-Intensive Systems, pages 459–472. IGI Global, 2011.

[16] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Formal Mod-
elling and Verification of Service-Oriented Systems in Probabilistic
Event-B. In IFM 2012, Integrated Formal Methods. Springer-Verlag,
2012, to appear.

[17] Axel van Lamsweerde. Goal-Oriented Requirements Engineering: A
Guided Tour. In RE, pages 249–263, 2001.

[18] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe. An Au-
tomated Formal Approach to Managing Dynamic Reconfiguration. In
ASE 2006, pages 18–22. Springer-Verlag, 2006.

[19] M. Wermelinger, A. Lopes, and J.L. Fiadeiro. A Graph Based Architec-
tural Reconfiguration Language. SIGSOFT Softw. Eng. Notes, 26:21–32,
2001.

16

Appendix A

Event-B Development

CONTEXT ReconfigSystem ctx

SETS

STATE

MODES

MODULES

STATUS

CONSTANTS

ND

OK

NOK

n

main

spare

reconf

A

B

C

reached

not reached

failed

ss trans

AXIOMS

axm1 : partition(STATE , {ND}, {OK }, {NOK })

axm2 : n ∈ N1

axm3 : partition(MODES , {main}, {spare}, {reconf })

axm4 : partition(MODULES , {A}, {B}, {C })

axm5 : partition(STATUS , {reached}, {not reached}, {failed})

axm6 : ss trans ∈ P(STATE) → STATUS

axm7 : ss trans({OK }) = reached

axm8 : ss trans({OK ,ND}) = not reached

axm9 : ss trans({ND}) = not reached

axm10 : ∀S ·S ∈ P(STATE) ∧ NOK ∈ S ⇒ ss trans(S) = failed

END

17

MACHINE AbstractGoal

SEES ReconfigSystem ctx

VARIABLES

goal

idle

INVARIANTS

inv1 : goal ∈ STATUS

inv2 : idle ∈ BOOL

EVENTS

Initialisation

begin

act1 : goal := not reached
act2 : idle := TRUE

end

Event Activation =̂

when

grd1 : idle = TRUE
then

act1 : idle := FALSE
end

Event Body =̂

when

grd2 : idle = FALSE
grd1 : goal = not reached

then

act1 : goal :∈ STATUS
end

Event Finish =̂

when

grd1 : goal = reached
then

act1 : goal := not reached
act2 : idle := TRUE

end

Event Abort =̂

when

grd1 : goal = failed
then

skip

end

END

18

MACHINE ReconfigSystem

REFINES AbstractGoal

SEES ReconfigSystem ctx

VARIABLES

idle

task

INVARIANTS

inv1 : task ∈ 1 .. n → STATE

inv2 : (∃i ·i ∈ 1 .. n ∧ task(i) 6= ND) ⇒ idle = FALSE

inv3 : task [1 .. n] = {OK }⇒ goal = reached

inv4 : (task [1 .. n] = {OK ,ND} ∨ task [1 .. n] = {ND}) ⇒ goal =
not reached

inv5 : (∃i ·i ∈ 1 .. n ∧ task(i) = NOK) ⇒ goal = failed

inv6 : ∀l ·l ∈ 2 ..n∧task(l) 6= ND⇒(∀i ·i ∈ 1 .. l−1 ⇒task(i) = OK)

inv7 : ∀l ·l ∈ 1 ..n −1 ∧ task(l) 6= OK ⇒ (∀i ·i ∈ l +1 ..n ⇒ task(i) =
ND)

EVENTS

Initialisation

begin

act1 : task := 1 .. n × {ND}
act2 : idle := TRUE

end

Event Activation =̂

extends Activation

when

grd1 : idle = TRUE

then

act1 : idle := FALSE

end

Event Start =̂

refines Body

any

res
where

grd1 : res ∈ {OK ,NOK }
grd2 : idle = FALSE
grd3 : task(1) = ND

with

goal′ : goal′ = ss trans(task′[1 .. n])

19

then

act1 : task(1) := res

end

Event Progress =̂

refines Body

any

j
res

where

grd1 : j > 0
grd2 : j < n
grd3 : res ∈ {OK ,NOK }
grd4 : task(j) = OK
grd5 : task(j + 1) = ND

with

goal′ : goal′ = ss trans(task′[1 .. n])
then

act1 : task(j + 1) := res

end

Event Finish =̂

refines Finish

when

grd1 : task [1 .. n] = {OK }
then

act1 : idle := TRUE
act2 : task := 1 .. n × {ND}

end

Event Abort =̂

refines Abort

any

j

where

grd1 : j > 0
grd2 : j ≤ n
grd3 : task(j) = NOK

then

skip

end

END

20

MACHINE ReconfigSystem Ref

REFINES ReconfigSystem

SEES ReconfigSystem ctx

VARIABLES

idle

task

ct

INVARIANTS

inv1 : ct ∈ 0 .. n

inv2 : idle = TRUE ⇒ ct = 0

inv3 : ct > 0 ⇒ (∀i ·i ∈ 1 .. ct ⇒ task(i) = OK)

inv4 : ct < n ⇒ task(ct + 1) ∈ {ND ,NOK }

inv5 : ct < n − 1 ⇒ (∀i ·i ∈ ct + 2 .. n ⇒ task(i) = ND)

EVENTS

Initialisation

extended

begin

act1 : task := 1 .. n× {ND}
act2 : idle := TRUE

act3 : ct := 0
end

Event Activation =̂

extends Activation

when

grd1 : idle = TRUE

then

act1 : idle := FALSE

end

Event Start =̂

refines Start

when

grd1 : idle = FALSE
grd2 : ct = 0
grd3 : task(1) = ND

with

res : res = OK

then

act1 : task(1) := OK
act2 : ct := 1

21

end

Event FailStart =̂

refines Start

when

grd1 : idle = FALSE
grd2 : ct = 0
grd3 : task(1) = ND

with

res : res = NOK

then

act1 : task(1) := NOK

end

Event Progress =̂

refines Progress

when

grd1 : ct > 0
grd2 : ct < n
grd3 : task(ct + 1) = ND

with

res : res = OK

j : j = ct

then

act1 : task(ct + 1) := OK
act2 : ct := ct + 1

end

Event FailProgress =̂

refines Progress

when

grd1 : ct > 0
grd2 : ct < n
grd3 : task(ct + 1) = ND

with

res : res = NOK

j : j = ct

then

act1 : task(ct + 1) := NOK

end

Event Finish =̂

refines Finish

when

22

grd1 : ct = n

then

act1 : idle := TRUE
act2 : task := task ✁− (1 .. n × {ND})
act3 : ct := 0

end

Event Abort =̂

refines Abort

when

grd1 : ct < n
grd2 : task(ct + 1) = NOK

with

j : j = ct + 1

then

skip

end

END

23

MACHINE ReconfigSystem Ref Str1

REFINES ReconfigSystem Ref

SEES ReconfigSystem ctx

VARIABLES

idle

ct

module

a comp

b comp

c comp

INVARIANTS

inv1 : module ∈ {A,B ,C }

inv2 : a comp ∈ 1 .. n → STATE

inv3 : b comp ∈ 1 .. n → STATE

inv4 : c comp ∈ 1 .. n → STATE

inv5 : ∀i ·i ∈ 1 .. n ∧module = A∧ a comp(i) = OK ⇒ task(i) = OK

inv6 : module = A⇒ (∀i ·i ∈ 1 .. n ⇒ b comp(i) = ND ∧ c comp(i) =
ND)

inv7 : ∀i ·i ∈ 1 .. n ∧module = A∧ a comp(i) 6= OK ⇒ task(i) = ND

inv8 : module = A∧ct < n−1⇒(∀i ·i ∈ ct+2 ..n⇒a comp(i) = ND)

inv9 : module = A ∧ ct > 0 ⇒ (∀i ·i ∈ 1 .. ct ⇒ a comp(i) = OK)

inv10 : ∀i ·i ∈ 1 ..n ∧module = B ∧b comp(i) 6= OK ⇒ task(i) = ND

inv11 : ∀i ·i ∈ 1 .. n ∧ module = C ⇒ c comp(i) = task(i)

inv12 : module = B ⇒ (∃i ·i ∈ 1 .. n ∧ a comp(i) = NOK)

inv13 : module = C ⇒ (∃i ·i ∈ 1 .. n ∧ b comp(i) = NOK)

inv19 : module = B ⇒ (∀i ·i ∈ 1 .. n ⇒ c comp(i) = ND)

inv14 : module = B ∧ ct > 0 ⇒ (∀i ·i ∈ 1 .. ct ⇒ b comp(i) = OK)

inv15 : module = C ∧ ct > 0 ⇒ (∀i ·i ∈ 1 .. ct ⇒ c comp(i) = OK)

inv16 : module = A ∧ ct < n ⇒ a comp(ct + 1) ∈ {ND ,NOK }

inv17 : module = B ∧ ct < n ⇒ b comp(ct + 1) ∈ {ND ,NOK }

inv18 : module = B∧ct < n−1⇒(∀i ·i ∈ ct+2 ..n⇒b comp(i) = ND)

EVENTS

Initialisation

begin

act1 : module := A
act2 : idle := TRUE
act3 : ct := 0

24

act4 : a comp := 1 .. n × {ND}
act5 : b comp := 1 .. n × {ND}
act6 : c comp := 1 .. n × {ND}

end

Event Activation =̂

extends Activation

when

grd1 : idle = TRUE

then

act1 : idle := FALSE

end

Event StartA =̂

refines Start

when

grd1 : module = A
grd2 : idle = FALSE
grd3 : ct = 0
grd4 : a comp(1) = ND

then

act1 : a comp(1) := OK
act2 : ct := 1

end

Event StartB =̂

refines Start

when

grd1 : module = B
grd2 : idle = FALSE
grd3 : ct = 0
grd4 : b comp(1) = ND

then

act1 : b comp(1) := OK
act2 : ct := 1

end

Event StartC =̂

refines Start

when

grd1 : module = C
grd2 : idle = FALSE
grd3 : ct = 0
grd4 : c comp(1) = ND

25

then

act1 : c comp(1) := OK
act2 : ct := 1

end

Event FailStartA =̂

when

grd1 : module = A
grd2 : idle = FALSE
grd3 : ct = 0
grd4 : a comp(1) = ND

then

act1 : a comp(1) := NOK
end

Event FailStartB =̂

when

grd1 : module = B
grd2 : idle = FALSE
grd3 : ct = 0
grd4 : b comp(1) = ND

then

act1 : b comp(1) := NOK
end

Event FailStartC =̂

refines FailStart

when

grd1 : module = C
grd2 : idle = FALSE
grd3 : ct = 0
grd4 : c comp(1) = ND

then

act1 : c comp(1) := NOK
end

Event ProgressA =̂

refines Progress

when

grd1 : module = A
grd2 : ct > 0
grd3 : ct < n
grd4 : a comp(ct + 1) = ND

then

act1 : a comp(ct + 1) := OK

26

act2 : ct := ct + 1
end

Event ProgressB =̂

refines Progress

when

grd1 : module = B
grd2 : ct > 0
grd3 : ct < n
grd4 : b comp(ct + 1) = ND

then

act1 : b comp(ct + 1) := OK
act2 : ct := ct + 1

end

Event ProgressC =̂

refines Progress

when

grd1 : module = C
grd2 : ct > 0
grd3 : ct < n
grd4 : c comp(ct + 1) = ND

then

act1 : c comp(ct + 1) := OK
act2 : ct := ct + 1

end

Event FailProgressA =̂

when

grd1 : module = A
grd2 : ct > 0
grd3 : ct < n
grd4 : a comp(ct + 1) = ND

then

act1 : a comp(ct + 1) := NOK
end

Event FailProgressB =̂

when

grd1 : module = B
grd2 : ct > 0
grd3 : ct < n
grd4 : b comp(ct + 1) = ND

then

act1 : b comp(ct + 1) := NOK

27

end

Event FailProgressC =̂

refines FailProgress

when

grd1 : module = C
grd2 : ct > 0
grd3 : ct < n
grd4 : c comp(ct + 1) = ND

then

act1 : c comp(ct + 1) := NOK

end

Event FinishA =̂

refines Finish

when

grd1 : ct = n
grd2 : module = A

then

act1 : idle := TRUE
act2 : a comp := 1 .. n × {ND}
act3 : ct := 0

end

Event EnableSpareB =̂

when

grd1 : module = A
grd2 : ct < n
grd3 : a comp(ct + 1) = NOK

then

act1 : module := B
act2 : b comp := b comp ✁− (1 .. ct × {OK })

end

Event EnableSpareC =̂

when

grd1 : module = B
grd2 : ct < n
grd3 : b comp(ct + 1) = NOK

then

act1 : module := C
act2 : c comp := c comp ✁− (1 .. ct × {OK })

end

Event Abort =̂

28

refines Abort

when

grd1 : ct < n
grd2 : c comp(ct + 1) = NOK

then

skip

end

Event FinishB =̂

refines Finish

when

grd1 : ct = n
grd2 : module = B

then

act1 : idle := TRUE
act2 : b comp := 1 .. n × {ND}
act3 : ct := 0

end

Event FinishC =̂

refines Finish

when

grd1 : ct = n
grd2 : module = C

then

act1 : idle := TRUE
act2 : c comp := 1 .. n × {ND}
act3 : ct := 0

end

END

29

MACHINE ReconfigSystem Ref Str2

REFINES ReconfigSystem Ref

SEES ReconfigSystem ctx

VARIABLES

idle

a comp

b comp

ct

module

INVARIANTS

inv1 : module ∈ {A,B}

inv2 : a comp ∈ 1 .. n → STATE

inv3 : b comp ∈ 1 .. n → STATE

inv4 : ct = 0 ∧ module = A ∧ a comp(1) = ND ⇒ task(1) = ND

inv5 : ct = 0 ∧ module = B ∧ b comp(1) = ND ⇒ task(1) = ND

inv6 : module = A ∧ ct > 0 ∧ a comp(ct) = OK ⇒ task(ct) = OK

inv7 : module = B ∧ ct > 0 ∧ b comp(ct) = OK ⇒ task(ct) = OK

inv8 : ∀i ·i ∈ 1 .. n ∧ a comp(i) = NOK ∧ b comp(i) = NOK ⇒
task(i) = NOK

inv9 : ∀i ·i ∈ 1 ..n∧a comp(i) = NOK ∧b comp(i) = ND⇒task(i) =
ND

inv16 : ∀i ·i ∈ 1 ..n∧b comp(i) = NOK∧a comp(i) = ND⇒task(i) =
ND

inv17 : ∀i ·i ∈ 1 ..n∧a comp(i) = ND ∧b comp(i) = ND ⇒ task(i) =
ND

inv20 : module = A ∧ ct > 0 ∧ ct < n ∧ a comp(ct + 1) = ND ⇒
task(ct + 1) = ND

inv21 : module = B ∧ ct > 0 ∧ ct < n ∧ b comp(ct + 1) = ND ⇒
task(ct + 1) = ND

EVENTS

Initialisation

begin

act1 : idle := TRUE
act2 : ct := 0
act3 : module := A
act5 : b comp := 1 .. n × {ND}
act4 : a comp := 1 .. n × {ND}

end

30

Event Activation =̂

extends Activation

when

grd1 : idle = TRUE

then

act1 : idle := FALSE

end

Event StartA =̂

refines Start

when

grd1 : idle = FALSE
grd2 : module = A
grd3 : ct = 0
grd4 : a comp(1) = ND

then

act1 : a comp(1) := OK
act2 : ct := 1

end

Event StartB =̂

refines Start

when

grd1 : idle = FALSE
grd2 : module = B
grd3 : ct = 0
grd4 : b comp(1) = ND

then

act1 : b comp(1) := OK
act2 : ct := 1

end

Event FailStartA 1 =̂

refines FailStart

when

grd1 : idle = FALSE
grd2 : module = A
grd3 : ct = 0
grd4 : a comp(1) = ND
grd5 : b comp(1) = NOK

then

act1 : a comp(1) := NOK

end

31

Event FailStartB 1 =̂

refines FailStart

when

grd1 : idle = FALSE
grd2 : module = B
grd3 : ct = 0
grd4 : b comp(1) = ND
grd5 : a comp(1) = NOK

then

act1 : b comp(1) := NOK
end

Event ProgressA =̂

refines Progress

when

grd1 : ct > 0
grd2 : ct < n
grd3 : module = A
grd4 : a comp(ct + 1) = ND

then

act1 : a comp(ct + 1) := OK
act2 : ct := ct + 1

end

Event ProgressB =̂

refines Progress

when

grd1 : ct > 0
grd2 : ct < n
grd3 : module = B
grd4 : b comp(ct + 1) = ND

then

act1 : b comp(ct + 1) := OK
act2 : ct := ct + 1

end

Event FailProgressA 1 =̂

refines FailProgress

when

grd1 : ct > 0
grd2 : ct < n
grd5 : module = A
grd4 : a comp(ct + 1) = ND
grd6 : b comp(ct + 1) = NOK

32

then

act1 : a comp(ct + 1) := NOK

end

Event FailProgressB 1 =̂

refines FailProgress

when

grd1 : ct > 0
grd2 : ct < n
grd3 : module = B
grd4 : b comp(ct + 1) = ND
grd5 : a comp(ct + 1) = NOK

then

act1 : b comp(ct + 1) := NOK

end

Event Finish =̂

refines Finish

when

grd1 : ct = n

then

act1 : idle := TRUE
act2 : ct := 0
act3 : a comp := a comp ✁− (dom(a comp ✄ {OK }) × {ND})
act4 : b comp := b comp ✁− (dom(b comp ✄ {OK }) × {ND})

end

Event Abort =̂

refines Abort

when

grd1 : ct < n
grd2 : a comp(ct + 1) = NOK ∧ b comp(ct + 1) = NOK

then

skip

end

Event SwitchAB =̂

when

grd1 : module = A
grd2 : ct < n
grd3 : a comp(ct + 1) = NOK
grd4 : b comp(ct + 1) = ND

then

act1 : module := B

33

end

Event SwitchBA =̂

when

grd1 : module = B
grd2 : ct < n
grd3 : b comp(ct + 1) = NOK
grd4 : a comp(ct + 1) = ND

then

act1 : module := A
end

Event FailStartA 2 =̂

when

grd1 : idle = FALSE
grd2 : module = A
grd3 : ct = 0
grd4 : a comp(1) = ND
grd5 : b comp(1) = ND

then

act1 : a comp(1) := NOK
end

Event FailStartB 2 =̂

when

grd1 : idle = TRUE
grd2 : module = B
grd3 : ct = 0
grd4 : b comp(1) = ND
grd5 : a comp(1) = ND

then

act1 : b comp(1) := NOK

end

Event FailProgressA 2 =̂

when

grd1 : ct > 0
grd2 : ct < n
grd3 : module = A
grd4 : a comp(ct + 1) = ND
grd5 : b comp(ct + 1) = ND

then

act1 : a comp(ct + 1) := NOK
end

Event FailProgressB 2 =̂

34

when

grd1 : ct > 0
grd2 : ct < n
grd3 : module = B
grd4 : b comp(ct + 1) = ND
grd5 : a comp(ct + 1) = ND

then

act1 : b comp(ct + 1) := NOK
end

END

35

Appendix B

PRISM Specifications

ctmc // Single DPU

const double λ = 1/(12 · 60) // TC access rate

const double µ = 1/20; // TM output rate

const double α1 = 1/60; // DPU’s component 1 service rate
const double β1 = 0.0000008; // DPU’s component 1 failure rate

const double α2 = 1/30;
const double β2 = 0.000001;

const double α3 = 1/30;
const double β3 = 0.0000009;

const double α4 = 1/(90);
const double β4 = 0.0000006;

global idle : bool init true;

module Activation

[] idle → λ : (idle′ = false);

endmodule

module DPU

a1 : [0..2] init 0; // 0=ND, 1=OK, 2=NOK
a2 : [0..2] init 0;
a3 : [0..2] init 0;
a4 : [0..2] init 0;

[] idle → λ : (idle′ = false);

[] !idle & a1 = 0 → α1 : (a′
1

= 1) + β1 : (a′
1

= 2);

[] a2 = 0 & a1 = 1 → α2 : (a′
2 = 1) + β2 : (a′

2 = 2);

[] a3 = 0 & a2 = 1 → α3 : (a′
3

= 1) + β3 : (a′
3

= 2);

[] a4 = 0 & a3 = 1 → α4 : (a′
4 = 1) + β4 : (a′

4 = 2);

[] a4 = 1 → µ : (a′
1

= 0) & (a′
2

= 0) & (a′
3

= 0) & (a′
4

= 0) & (idle′ = true);

endmodule

module Abort

[] fail → true;

endmodule

formula fail = (a1 = 2 | a2 = 2 | a3 = 2 | a4 = 2);

36

rewards “goals”

[] a4 = 1 : 1;

endrewards

37

ctmc // Triplicated DPU with static reconfiguration

const double λ = 1/(12 · 60) // TC access rate

const double µ = 1/20; // TM output rate

const double δ = 1/10 // spare DPU activation rate

const double τ = 1/5; // DPUs’ communication rate

const double α1 = 1/60; // DPU’s component 1 service rate
const double β1 = 0.0000008; // DPU’s component 1 failure rate

const double α2 = 1/30;
const double β2 = 0.000001;

const double α3 = 1/30;
const double β3 = 0.0000009;

const double α4 = 1/(90);
const double β4 = 0.0000006;

global idle : bool init true;
global ct : [0..4] init 0;

module Activation

[] idle → λ : (idle′ = false);

endmodule

module DPUA

a1 : [0..2] init 0; // 0=ND, 1=OK, 2=NOK
a2 : [0..2] init 0;
a3 : [0..2] init 0;
a4 : [0..2] init 0;

[] !idle & dpu = 1 & a1 = 0 → α1 : (a′
1

= 1) & (ct′ = ct + 1) + β1 : (a′
1

= 2);

[] dpu = 1&a2 = 0& ct = 1 → α2 : (a′
2 = 1)&(ct′ = ct+1)+β2 : (a′

2 = 2);

[] dpu = 1&a3 = 0& ct = 2 → α3 : (a′
3

= 1)&(ct′ = ct+1)+β3 : (a′
3

= 2);

[] dpu = 1&a4 = 0& ct = 3 → α4 : (a′
4

= 1)&(ct′ = ct+1)+β4 : (a′
4

= 2);

[] dpu = 1 & ct = 4 → µ :
(a′

1
= 0) & (a′

2
= 0) & (a′

3
= 0) & (a′

4
= 0) & (idle′ = true) & (ct′ = 0);

endmodule

module DPUB

b1 : [0..2] init 0; // 0=ND, 1=OK, 2=NOK
b2 : [0..2] init 0;
b3 : [0..2] init 0;
b4 : [0..2] init 0;

[] !idle & dpu = 2 & b1 = 0 → α1 : (b′
1

= 1) & (ct′ = ct + 1) + β1 : (b′
1

= 2);

[] dpu = 2 & b2 = 0 & ct = 1 → α2 : (b′2 = 1) & (ct′ = ct + 1) + β2 : (b′2 = 2);

38

[] dpu = 2 & b3 = 0 & ct = 2 → α3 : (b′
3

= 1) & (ct′ = ct + 1) + β3 : (b′
3

= 2);

[] dpu = 2 & b4 = 0 & ct = 3 → α4 : (b′
4

= 1) & (ct′ = ct + 1) + β4 : (b′
4

= 2);

[] dpu = 2 & ct = 4 → µ :
(b′1 = 0) & (b′2 = 0) & (b′3 = 0) & (b′4 = 0) & (idle′ = true) & (ct′ = 0);

endmodule

module DPUC

c1 : [0..2] init 0; // 0=ND, 1=OK, 2=NOK
c2 : [0..2] init 0;
c3 : [0..2] init 0;
c4 : [0..2] init 0;

[] !idle & dpu = 3 & c1 = 0 → α1 : (c′1 = 1) & (ct′ = ct + 1) + β1 : (c′1 = 2);

[] dpu = 3 & c2 = 0 & ct = 1 → α2 : (c′2 = 1) & (ct′ = ct + 1) + β2 : (c′2 = 2);

[] dpu = 3 & c3 = 0 & ct = 2 → α3 : (c′
3

= 1) & (ct′ = ct + 1) + β3 : (c′
3

= 2);

[] dpu = 3 & c4 = 0 & ct = 3 → α4 : (c′
4

= 1) & (ct′ = ct + 1) + β4 : (c′
4

= 2);

[] dpu = c & ct = 4 → µ :
(c′1 = 0) & (c′2 = 0) & (c′3 = 0) & (c′4 = 0) & (idle′ = true) & (ct′ = 0);

endmodule

module Switcher

dpu : [1..3] init 1; // 1=A, 2=B, 3=C
spareB : bool init false;
spareC : bool init false;

// switching to the first spare DPU (A to B)
[] failA & !spareB → δ : (spareB′ = true);

[] spareB & dpu = 1 → τ : (dpu′ = 2);

// switching to the second spare DPU (B to C)
[] failB & !spareC → δ : (spareC ′ = true);

[] spareC & dpu = 2 → τ : (dpu′ = 3);

endmodule

module Abort

[] failC → true;

endmodule

formula failA = (a1 = 2 | a2 = 2 | a3 = 2 | a4 = 2);
formula failB = (b1 = 2 | b2 = 2 | b3 = 2 | b4 = 2);
formula failC = (c1 = 2 | c2 = 2 | c3 = 2 | c4 = 2);

rewards “goals”

[] ct = 4 : 1;

endrewards

39

ctmc // Duplicated DPU with dynamic reconfiguration

const double λ = 1/(12 · 60) // TC access rate

const double µ = 1/20; // TM output rate

const double δ = 1/10 // spare DPU activation rate

const double τ = 1/5; // DPUs’ communication rate

const double α1 = 1/60; // DPU’s component 1 service rate
const double β1 = 0.0000008; // DPU’s component 1 failure rate

const double α2 = 1/30;
const double β2 = 0.000001;

const double α3 = 1/30;
const double β3 = 0.0000009;

const double α4 = 1/(90);
const double β4 = 0.0000006;

global idle : bool init true;
global ct : [0..4] init 0;

module Activation

[] idle → λ : (idle′ = false);

endmodule

module DPUAB

a1 : [0..2] init 0; // 0=ND, 1=OK, 2=NOK
a2 : [0..2] init 0;
a3 : [0..2] init 0;
a4 : [0..2] init 0;

b1 : [0..2] init 0;
b2 : [0..2] init 0;
b3 : [0..2] init 0;
b4 : [0..2] init 0;

na1 : [0..2] init 0; // next-step states of the components
na2 : [0..2] init 0;
na3 : [0..2] init 0;
na4 : [0..2] init 0;

nb1 : [0..2] init 0;
nb2 : [0..2] init 0;
nb3 : [0..2] init 0;
nb4 : [0..2] init 0;

[] !idle & dpu = 1 & a1 = 0 & ct = 0 →
α1 : (a′

1
= 1) & (na′

1
= 0) & (ct′ = ct + 1) + β1 : (a′

1
= 2) & (na′

1
= 2);

[] dpu = 1 & a2 = 0 & ct = 1 →
α2 : (a′

2 = 1) & (na′
2 = 0) & (ct′ = ct + 1) + β2 : (a′

2 = 2) & (na′
2 = 2);

40

[] dpu = 1 & a3 = 0 & ct = 2 →
α3 : (a′

3 = 1) & (na′
3 = 0) & (ct′ = ct + 1) + β3 : (a′

3 = 2) & (na′
3 = 2);

[] dpu = 1 & a4 = 0 & ct = 3 →
α4 : (a′

4 = 1) & (na′
4 = 0) & (ct′ = ct + 1) + β4 : (a′

4 = 2) & (na′
4 = 2);

[] !idle & dpu = 2 & b1 = 0 →
α1 : (b′

1
= 1) & (nb′

1
= 0) & (ct′ = ct + 1) + β1 : (b′

1
= 2) & (nb′

1
= 2);

[] dpu = 2 & b2 = 0 & b1 = 1 →
α2 : (b′

2
= 1) & (nb′

2
= 0) & (ct′ = ct + 1) + β2 : (b′

2
= 2) & (nb′

2
= 2);

[] dpu = 2 & b3 = 0 & b2 = 1 →
α3 : (b′3 = 1) & (nb′3 = 0) & (ct′ = ct + 1) + β3 : (b′3 = 2) & (nb′3 = 2);

[] dpu = 2 & b4 = 0 & b3 = 1 →
α4 : (b′

4
= 1) & (nb′

4
= 0) & (ct′ = ct + 1) + β4 : (b′

4
= 2) & (nb′

4
= 2);

[] ct = 4 → µ : (a′
1 = na1) & (a′

2 = na2)&
(a′

3
= na3) & (a′

4
= na4) & (b′

1
= nb1) & (b′

2
= nb2)&

(b′3 = nb3) & (b′4 = nb4) & (idle′ = true) & (ct′ = 0);

endmodule

module Switcher

dpu : [1..2] init 1; // 1=A, 2=B
// counter of switches between DPUs, 2 = “two or more times”

swc : [0..2] init 1;

[] failA & swc = 0 → δ : (swc′ = 1); // spare DPU activation

[] failB & swc = 1 → δ : (swc′ = 2); // main DPU reactivation

// switching to the spare DPU (A to B)
[] a1 = 2 & b1 = 0 & ct = 0 & swc > 0 & dpu = 1 → τ : (dpu′ = 2);

[] a2 = 2 & b2 = 0 & ct = 1 & swc > 0 & dpu = 1 → τ : (dpu′ = 2);

[] a3 = 2 & b3 = 0 & ct = 2 & swc > 0 & dpu = 1 → τ : (dpu′ = 2);

[] a4 = 2 & b4 = 0 & ct = 3 & swc > 0 & dpu = 1 → τ : (dpu′ = 2);

// switching to the main DPU (B to A)
[] a1 = 0 & b1 = 2 & ct = 0 & swc = 2 & dpu = 2 → τ : (dpu′ = 1);

[] a2 = 0 & b2 = 2 & ct = 1 & swc = 2 & dpu = 2 → τ : (dpu′ = 1);

[] a3 = 0 & b3 = 2 & ct = 2 & swc = 2 & dpu = 2 → τ : (dpu′ = 1);

[] a4 = 0 & b4 = 2 & ct = 3 & swc = 2 & dpu = 2 → τ : (dpu′ = 1);

endmodule

module Abort

[] fail → true;

endmodule

formula fail = ((a1 = 2 & b1 = 2) |
(a2 = 2 & b2 = 2) | (a3 = 2 & b3 = 2) | (a4 = 2 & b4 = 2));

41

rewards “goals”

[] ct = 4 : 1;

endrewards

42

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Information Technologies

Turku School of Economics

• Institute of Information Systems Sciences

ISBN 978-952-12-2719-6

ISSN 1239-1891

