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Abstract

Certification of safety-critical systems requires formal verification of system
properties and behaviour as well as quantitative demonstration of safety.
Usually, formal modelling frameworks do not include quantitative assessment
of safety. This has a negative impact on productivity and predictability of
system development. In this paper we present an approach to integrating
quantitative safety analysis into formal system modelling and verification
in Event-B. The proposed approach is based on an extension of Event-B,
which allows us to perform quantitative assessment of safety within proof-
based verification of system behaviour. This enables development of systems
that are not only correct but also safe by construction. The approach is
demonstrated by a case study – an automatic railway crossing system.

Keywords: Event-B; formal modelling; refinement; safety; probabilistic rea-
soning
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1 Introduction

Safety is a property of a system to not endanger human life or environment
[4]. To guarantee safety, designers employ various rigorous techniques for
formal modeling and verification. Such techniques facilitate formal reason-
ing about system correctness. In particular, they allow us to guarantee that
a safety invariant – a logical representation of safety – is always preserved
during system execution. However, real safety-critical systems, i.e., the sys-
tems whose components are susceptible to various kinds of faults, are not
“absolutely” safe. In other words, certain combinations of failures might
lead to an occurrence of a hazard – a potentially dangerous situation that
breaches safety requirements. While designing and certifying safety-critical
systems, we should demonstrate that the probability of a hazard occurrence
is acceptably low. In this paper we propose an approach to combining formal
system modeling and quantitative safety analysis.

Our approach is based on a probabilistic extension of Event-B [21]. Event-
B is a formal modeling framework for developing systems correct-by-con-
struction [3, 1]. It is actively used in the EU project Deploy [6] for modeling
and verifying of complex systems from various domains including railways.
The Rodin platform [20] provides the designers with an automated tool sup-
port that facilitates formal verification and makes Event-B relevant in an
industrial setting.

The main development technique of Event-B is refinement – a top-down
process of gradual unfolding of the system structure and elaborating on its
functionality. In this paper we propose design strategies that allow the devel-
opers to structure safety requirements according to the system abstraction
layers. Essentially, such an approach can be seen as a process of extracting
a fault tree – a logical representation of a hazardous situation in terms of
the primitives used at different layers of abstraction. Eventually, we arrive
at the representation of a hazardous situation in terms of failures of basic
system components. Since our specification contains an explicit represen-
tation of probabilities of component failures, standard calculations allow us
to obtain a probabilistic evaluation of a hazard occurrence. As a result, we
obtain an algebraic representation of probability of safety requirements viola-
tion. This probability is defined using the probabilities of system component
failures. To illustrate our approach, we present a formal development and
safety analysis of a radio-based railway crossing. We believe the proposed
approach can potentially facilitate development, verification and assessment
of safety-critical systems.

The rest of the paper is organised as follows. In Section 2 we describe our
formal modelling framework – Event-B, and briefly introduce its probabilistic
extension. In Section 3 we discuss a general design strategy for specifying
Event-B models amenable for probabilistic analysis of system safety. In Sec-
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Figure 1: Event-B machine and context

tion 4 we demonstrate the presented approach by a case study. Finally,
Section 5 presents an overview of the related work and some concluding re-
marks.

2 Modelling in Event-B

The B Method [2] is an approach for the industrial development of highly
dependable software. The method has been successfully used in the devel-
opment of several complex real-life applications [19, 5]. Event-B is a formal
framework derived from the B Method to model parallel, distributed and
reactive systems. The Rodin platform provides automated tool support for
modelling and verification (by theorem proving) in Event-B. Currently Event-
B is used in the EU project Deploy to model several industrial systems from
automotive, railway, space and business domains.

Event-B Language. In Event-B, a system specification (model) is defined
using the notion of an abstract state machine [18]. An abstract state machine
encapsulates the model state, represented as a collection of model variables,
and defines operations on this state. Therefore, it describes the dynamic part
(behaviour) of the modelled system. A machine may also have an accompa-
nying component, called context, which contains the static part of the system.
In particular, a context can include user-defined carrier sets, constants and
their properties, which are given as a list of model axioms. A general form
of Event-B models is given in Fig. 1.

The machine is uniquely identified by its name M . The state variables,
v, are declared in the Variables clause and initialised in the Init event.
The variables are strongly typed by the constraining predicates I given in
the Invariants clause. The invariant clause also contains other predicates
defining properties that must be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic
events specified in the Events clause. Generally, an event can be defined as
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Action (S) BA(S)

x := E(x, y) x′ = E(x, y) ∧ y′ = y

x :∈ Set ∃z · (z ∈ Set ∧ x′ = z) ∧ y′ = y

x :| Q(x, y, x′) ∃z · (Q(x, z, y) ∧ x′ = z) ∧ y′ = y

Figure 2: Before-after predicates

follows:

evt =̂ any a where g then S end,

where a is the list of local variables, the guard g is a conjunction of predicates
over the local variables a and state variables v, while the action S is an
assignment to the state variables. If an event does not have local variables,
it can be described simply as

evt =̂ when g then S end.

The occurrence of events represents the observable behaviour of the sys-
tem. The guard defines the conditions under which the action can be exe-
cuted, i.e., when the event is enabled. If several events are enabled at the
same time, any of them can be chosen for execution nondeterministically. If
none of the events is enabled then the system deadlocks.

In general, the action of an event is a parallel composition of assignments.
The assignments can be either deterministic or non-deterministic. A deter-
ministic assignment, x := E(x, y), has the standard syntax and meaning. A
nondeterministic assignment is denoted either as x :∈ Set, where Set is a
set of values, or x :| Q(x, y, x′), where Q is a predicate relating initial val-
ues of x, y to some final value of x′. As a result of such a non-deterministic
assignment, x can get any value belonging to Set or satisfying Q.

Event-B Semantics. The semantics of Event-B actions is defined using
so-called before-after (BA) predicates [3, 18]. A BA predicate describes a
relationship between the system states before and after execution of an event,
as shown in Fig. 2. Here x and y are disjoint lists (partitions) of state
variables, and x′, y′ represent their values in the after-state.

The semantics of a whole Event-B model is formulated as a number of
proof obligations, expressed in the form of logical sequents. The full list of
proof obligations can be found in [3].

Probabilistic Event-B. In our previous work [21] we have have extended
the Event-B modelling language with a new operator – quantitative proba-
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bilistic choice, denoted ⊕|. It has the following syntax

x ⊕| x1 @ p1; . . . ; xn @ pn,

where

n∑

i=1

pi = 1. It assigns to the variable x a new value xi with the

corresponding non-zero probability pi. The quantitative probabilistic choice
(assignment) allows us to precisely represent the probabilistic information
about how likely a particular choice is made. In other words, it behaves
according to some known probabilistic distribution.

We have restricted the use of the new probabilistic choice operator by
introducing it only to replace the existing demonic one. This approach has
also been adopted by Hallerstede and Hoang, who have proposed extending
the Event-B framework with qualitative probabilistic choice [10]. It has been
shown that any probabilistic choice statement always refines its demonic non-
deterministic counterpart [13]. Hence, such an extension is not interfering
with the established refinement process. Therefore, we can rely on the Event-
B proof obligations to guarantee functional correctness of a refinement step.
Moreover, the probabilistic information introduced in new quantitative prob-
abilistic choices can be used to stochastically evaluate certain non-functional
system properties.

For instance, in [21] we have shown how the notion of Event-B refinement
can be strengthened to quantitatively demonstrate that the refined system is
more reliable than its abstract counterpart. In this paper we aim at enabling
quantitative safety analysis within Event-B development.

3 Safety Analysis in Event-B

In this paper we focus on modelling of highly dynamic reactive control sys-
tems. Such systems provide instant control actions as a result of receiving
stimuli from the controlled environment. Such a restriction prevents the sys-
tem from executing automated error recovery, i.e. once a component fails,
its failure is considered to be permanent and the system ceases its automatic
functioning.

Generally, control systems are built in a layered fashion and reasoning
about their behaviour is conducted by unfolding layers of abstraction. De-
ductive system safety analysis is performed in a similar way. We start by
identifying a hazard – a dangerous undesirable situation associated with the
system. By unfolding the layers of abstraction we formulate the hazard in
terms of component states of different layers.

In an Event-B model, a hazard can be naturally defined as a predicate
over the system variables. Sometimes, it is more convenient to reformulate
a hazard as a dual safety requirement (property) that specifies a proper
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behaviour of a system in a hazardous situation. The general form of such a
safety property is the following:

SAF =̂ H(v) ⇒ K(v),

where the predicate H(v) specifies a hazardous situation and the predicate
K(v) defines the safety requirements in the terms of the system variables and
their states.

The essential properties of an Event-B model are usually formulated as
invariants. However, to represent system behaviour realistically, our spec-
ification should include modelling of not only normal behaviour but also
component failure occurrence. Since certain combinations of failures will
lead to hazardous situations, we cannot guarantee “absolute” preservation
of safety invariants. Indeed, the goal of development of safety-critical sys-
tems is to guarantee that the probability of violation of safety requirements
is sufficiently small.

To assess the preservation of a desired safety property we will unfold
it (in the refinement process) until it refers only to concrete system com-
ponents that have direct impact on the system safety. To quantitatively
evaluate this impact we require that these components are probabilistically
modelled in Event-B using the available information about their reliability.
Next we demonstrate how the process of unfolding the safety property from
the abstract to the required concrete representation can be integrated into
the system development by refinement in Event-B.

Often, functioning of a system can be structured according to a number
of execution stages. There is a specific component functionality associated
with each stage. Since there is no possibility to replace or repair failed sys-
tem components, we can divide the process of quantitative safety assessment
into several consecutive steps, where each step corresponds to a particular
stage of the system functioning. Moreover, a relationship between different
failures of components and the system behaviour at a certain execution stage
is preserved during all the subsequent stages. On the other hand, different
subsystems can communicate with each other, which leads to possible addi-
tional dependencies between system failures (not necessarily within the same
execution stage). This fact significantly complicates quantitative evaluation
of the system safety.

We can unfold system safety properties either in a backward or in a for-

ward way. In the backward unfolding we start from the last execution stage
preceding the stage associated with the potentially hazardous situation. In
the forward one we start from the first execution stage of the system and
continue until the last stage just before the hazardous situation occurs. In
this paper we follow the former approach. The main idea is to perform a
stepwise analysis of any possible behaviour of all the subsystems at every
execution stage preceding the hazardous situation, while gradually unfolding
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the abstract safety property in terms of new (concrete) variables representing
faulty components of the system.

Specifically, in each refinement step, we have to establish the relationship
between the newly introduced variables and the abstract variables present
in the safety property. A standard way to achieve this is to formulate the
required relationship as a number of safety invariants in Event-B. According
to our development strategy, each such invariant establishes a connection
between abstract and more concrete variables that have an impact on system
safety. Moreover, the preservation of a safety invariant is usually verified for
a particular subsystem at a specific stage. Therefore, we can define a general
form of such an invariant in the following way:

Is(v, u) =̂ F (v) ⇒ (K(v) ⇔ L(u)),

where the predicate F restricts the execution stage and the subsystems in-
volved, while the predicate K ⇔ L relates the values of the newly introduced
variables u with the values the abstract variables v present in the initially
defined safety property or/and in the safety invariants defined in the previous
refinement steps.

To calculate the probability of preservation of the safety property, the
refinement process should be continued until all the abstract variables, used
in the definition of the system safety property, are related to the concrete,
probabilistically updated variables, representing various system failures or
malfunctioning. The process of probability evaluation is rather straightfor-
ward and based on basic definitions and rules for calculating probabilities
(see [7] for instance).

Let us consider a small yet generic example illustrating the calculation
of probability using Event-B safety invariants. We assume that the safety
property SAF is defined as above. In addition, let us define two safety
invariants – Is and Js – introduced in two subsequent refinement steps. More
specifically,

Is =̂ F ⇒ (K(v) ⇔ L1(u1) ∨ L2(u2)) and Js =̂ F̃ ⇒ (L2(u2) ⇔ N(w)),

where u1 ⊂ u, u1 6= ∅ are updated probabilistically in the first refinement,
while u2 = u\u1 are still abstract in the first refinement machine and related
by Js to the probabilistically updated variables w in the following one. Let
us note that the predicate F̃ must define the earlier stage of the system than
the predicate F does. Then the probability that the safety property SAF is
preserved by the system is

PSAF = P{K(v)} = P{L1(u1) ∨ L2(u2)} = P{L1(u1) ∨N(w)} =

P{L1(u1)}+ P{N(w)} − P{L1(u1) ∧N(w)},

where
P{L1(u1) ∧N(w)} = P{L1(u1)} · P{N(w)}
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in the case of independent L1 and N , and

P{L1(u1) ∧N(w)} = P{L1(u1)} · P{N(w) | L1(u1)}

otherwise. Note that the predicate H(v) is not participating in the calcula-
tion of PSAF directly. Instead, it defines “the time and the place” when and
where the values of the variables u and v should be considered, and, as long
as it specifies the hazardous situation following the stages defined by F and
F̃ , it can be understood as the post-state for all the probabilistic events.

In the next section we will demonstrate the approach presented above by
a case study – an automatic railway crossing system.

4 Case Study

To illustrate safety analysis in the probabilistically enriched Event-B meth-
od, in this section we present a quantitative safety analysis of a radio-based
railway crossing. This case study is included into priority program 1064 of
the German Research Council (DFG) prepared in cooperation with Deutsche
Bahn AG. The main difference between the proposed technology and tradi-
tional control systems of railway crossings is that signals and sensors on the
route are replaced by radio communication and software computations per-
formed at the train and railway crossings. Formal system modelling of such
a system has been undertaken previously [16, 15]. However, the presented
methodology is focused on logical (qualitative) reasoning about safety and
does not include quantitative safety analysis. Below we demonstrate how to
integrate formal modelling and probabilistic safety analysis.

Let us now briefly describe the functioning of a radio-based railway cross-
ing system. The train on the route continuously computes its position. When
it approaches a crossing, it broadcasts a close request to the crossing. When
the railway crossing receives the command close, it performs some routine
control to ensure safe train passage. It includes switching on the traffic lights,
that is followed by an attempt to close the barriers. Shortly before the train
reaches the latest braking point, i.e., the latest point where it is still possible
for the train to stop safely, it requests the status of the railway crossing.
If the crossing is secured, it responds with a release signal, which indicates
that the train may pass the crossing. Otherwise, the train has to brake and
stop before the crossing. More detailed requirements can be found in [16] for
instance.

In our development we abstract away from modelling train movement,
calculating train positions and routine control by the railway crossing. Let
us note that, any time when the train approaches to the railway crossing, it
sequentially performs a number of predefined operations:

• it sends the close request to the crossing controller;
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• after a delay it sends the status request;

• it awaits for an answer from the crossing controller.

The crossing controller, upon receiving the close request, tries to close
the barriers and, if successful, sends the release signal to the train. Oth-
erwise, it does not send any signal and in this case the train activates the
emergency brakes. Our safety analysis focused on defining the hazardous
events that may happen in such a railway crossing system due to different
hardware and/or communication failures, and assess the probability of the
hazard occurrences. We make the following fault assumptions:

• the radio communication is unreliable and can cause messages to be
lost;

• the crossing barrier motors may fail to start;

• the positioning sensors that are used by the crossing controller to de-
termine a physical position of the barriers are unreliable;

• the train emergency brakes may fail.

The abstract model. We start our development with identification of all
the high-level subsystems we have to model. Essentially, our system consists
of two main components – the train and the crossing controller. The system
environment is represented by the physical position of the train. Therefore,
each control cycle consists of three main phases – Env, Train and Crossing.
To indicate the current phase the eponymous variable is used.

The type modelling abstract train positions is defined as the enumerated
set of nonnegative integers POS SET = {0, CRP, SRP, SRS,DS}, where
0 < CRP < SRP < SRS < DS. Each value of POS SET represents
a specific position of the train. Here 0 stands for some initial train posi-
tion outside the communication area, CRP and SRP stand for the close
and status request points, and SRS and DS represent the safe reaction
and danger spots respectively. The actual train position is modelled by the
variable train pos ∈ POS SET . In addition, we use the boolean variable
emrg brakes to model the status of the train emergency brakes. We assume
that initially they are not triggered, i.e., emrg brakes = FALSE.

The crossing has two barriers – one at each side of the crossing. The
status of the barriers is modelled by the variables bar1 and bar2 that can
take values Opened and Closed. We assume that both barriers are initially
open.

The initial abstract machine RailwayCrossing is illustrated in Fig. 3.
We omit showing here the Initialisation event and the Invariants clause
(it merely defines the types of variables). Due to lack of space, in the rest
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Machine RailwayCrossing

Variables train pos, phase, emrg brakes, bar1, bar2
Invariants · · ·
Events · · ·
UpdatePosition1 =̂
when

phase = Env ∧ train pos < DS ∧ emrg brakes = FALSE

then

train pos := min({p | p ∈ POS SET ∧ p > train pos}) || phase := Train

end

UpdatePosition2 =̂
when

phase = Env∧((train pos = DS∧emrg brakes = FALSE)∨emrg brakes = TRUE)
then

skip

end

TrainIdle =̂
when

phase = Train ∧ train pos 6= SRS

then

phase := Crossing

end

TrainReact =̂
when

phase = Train ∧ train pos = SRS

then

emrg brakes :∈ BOOL || phase := Crossing

end

CrossingBars =̂
when

phase = Crossing ∧ train pos = CRP

then

bar1, bar2 :∈ BAR POS || phase := Env

end

CrossingIdle =̂
when

phase = Crossing ∧ train pos 6= CRP

then

phase := Env

end

Figure 3: Railway crossing: the abstract machine

of the section we will also present only some selected excerpts of the model.
The full Event-B specifications of the Railway crossing system can be found
in the appendix.

In the machine RailwayCrossing we consider only the basic function-
ality of the system. Two events UpdatePosition1 and UpdatePosition2 are
used to abstractly model train movement. The first event models the train
movement outside the danger spot by updating the train abstract position
according to the next value of the POS SET . The event UpdatePosition2

models the train behaviour after it has passed the last braking point or when
it has stopped in the safe reaction spot. Essentially, this event represents
the system termination (both safe and unsafe cases), which is modelled as
infinite stuttering, i.e., keeping the system in the final state forever. Such
an approach for modelling of the train movement is sufficient since we only
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analyse system behaviour within the train-crossing communication area, i.e.,
the area that consists of the close and status request points, and the safe re-
action spot. A more realistic approach for modelling of the train movement
is out of the scope of our safety analysis.

For the crossing controller, we abstractly model closing of the barriers
by the event CrossingBar, which non-deterministically assigns the variables
bar1 and bar2 from the set BAR POS. Let us note that in the abstract
machine the crossing controller immediately knows when the train enters
the close request area and makes an attempt to close the barriers. In further
refinement steps we eliminate this unrealistic abstraction by introducing com-
munication between the train and the crossing controller. In addition, in the
Train phase the event TrainReact non-deterministically models triggering
of the train emergency brakes in the safe reaction spot.

The hazard present in the system is the situation when the train passes
the crossing while at least one barrier is not closed. In terms of the introduced
system variables and their states it can defined as follows:

train pos = DS ∧ (bar1 = Opened ∨ bar2 = Opened).

In a more traditional (for Event-B invariants) form, this hazard can be dually
reformulated as the following safety property:

train pos = SRS ∧ phase = Crossing ⇒

(bar1 = Closed ∧ bar2 = Closed) ∨ emrg brakes = TRUE. (1)

This safety requirement can be interpreted as follows: after the train, being
in the safe reaction spot, has reacted on signals from the crossing controller,
the system is in the safe state only when both barriers are closed or the emer-
gency brakes are activated. Obviously, this property cannot be formulated as
an Event-B invariant – it might be violated due to possible communication
and/or hardware failures. Our goal is to assess the probability of violation
(or preservation) of the safety property (1). To achieve this, during the re-
finement process, we have to unfold (1) by introducing into the specification
the representation of all the system components that have an impact on the
system safety. Moreover, we should establish a relationship between the vari-
ables representing these components and the abstract variables presented in
(1).

The first refinement. In the first refinement step we examine in detail the
system behaviour at the safe reaction spot – the last train position preceding
the danger spot where the hazard may occur. As a result, the abstract event
TrainReact is refined by three events TrainRelease1, TrainRelease2 and
TrainStop that represent reaction of the train on the presence or absence of
the release signal from the crossing controller. The first two events are used
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to model the situations when the release signal has been successfully delivered
or lost respectively. The last one models the situation when the release signal
has not been sent due to some problems at the crossing controller side. Please
note that since the events TrainRelease2 and TrainStop perform the same
actions, i.e., trigger the emergency brakes, they differ only in their guards.

The event CrossingStatusReq that “decides” whether to send or not to
send the release signal is very abstract at this stage – it does not have any
specific guards except those that define the system phase and train posi-
tion. Moreover, the variable release snd is updated in the event body non-
deterministically. To model the failures of communication and emergency
brakes, we introduce two new events with probabilistic bodies – the events
ReleaseComm and TrainDec correspondingly. For convenience, we consider
communication as a part of the receiving side behaviour. Thus the release
communication failure occurrence is modelled in the Train phase while the
train being in the SRS position. Some key details of the Event-B machine
RailwayCrossing R1 that refines the abstract machine RailwayCrossing

are shown in Fig. 4.
The presence of concrete variables representing unreliable system compo-

nents in RailwayCrossing R1 allows us to formulate two safety invariants
(saf inv1 and saf inv2) that glue the abstract variable emrg brakes par-
ticipating in the safety requirement (1) with the (more) concrete variables
release rcv, emrg brakes failure, release snd and release com failure.

saf inv1 : train pos = SRS ∧ phase = Crossing ⇒ (emrg brakes = TRUE ⇔

release rcv = FALSE ∧ emrg brakes failure = FALSE)

saf inv2 : train pos = SRS ∧ phase = Crossing ⇒ (release rcv = FALSE ⇔

release snd = FALSE ∨ release comm failure = TRUE)

We split the relationship between the variables into two invariant properties
just to improve the readability and make the invariants easier to understand.
Obviously, since the antecedents of both invariants coincide, one can easily
merge them together by replacing the variable release rcv in saf inv1 with
the right hand side of the equivalence in the consequent of saf inv1. Please
note that the variable release snd corresponds to a certain combination of
system actions and hence should be further unfolded during the refinement
process.

The second refinement. In the second refinement step we further elab-
orate on the system functionality. In particular, we model the request mes-
sages that the train sends to the crossing controller, as well as sensors that
read the position of the barriers. Selected excerpts from the second refine-
ment machine RailwayCrossing R2 are shown in Fig. 5. To model sending
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Machine RailwayCrossing R1
Variables . . . , release snd, release rcv, emrg brakes failure, release com failure, . . .

Invariants · · ·
Events · · ·
TrainRelease1 =̂
when

phase = Train ∧ train pos = SRS ∧ release snd = TRUE

release comm failure = FALSE ∧ deceleration = FALSE ∧ comm ct = FALSE

then

emrg brakes := FALSE || release rcv := TRUE || phase := Crossing

end

TrainRelease2 =̂
when

phase = Train ∧ train pos = SRS ∧ release snd = TRUE

release comm failure = TRUE ∧ deceleration = FALSE ∧ comm ct = FALSE

then

emrg brakes :| emrg brakes′ ∈ BOOL ∧ (emrg brakes′ = TRUE ⇔
emrg brakes failure = FALSE)

release rcv := TRUE || phase := Crossing

end

TrainStop =̂
when

phase = Train∧ train pos = SRS∧ release snd = FALSE∧deceleration = FALSE

then

· · ·
end

CrossingStatusReq =̂
when

phase = Crossing ∧ train pos = SRP

then

release snd :∈ BOOL || phase := Env

end

ReleaseComm =̂
when

phase = Train ∧ train pos = SRS ∧ release snd = TRUE ∧ comm ct = TRUE

then

release comm failure ⊕| TRUE @ p1;FALSE @ 1−p1 || comm ct := FALSE

end

TrainDec =̂
when

phase = Train ∧ train pos = SRS ∧ deceleration = TRUE

then

emrg brakes failure ⊕| TRUE @ p4;FALSE @ 1−p4 || deceleration := FALSE

end

Figure 4: Railway crossing: first refinement

of the close and status requests by the train, we refine the event TrainIdle

by two simple events TrainCloseReq and TrainStatusReq that activate
sending of the close and status requests at the corresponding stages. In
the crossing controller part, we refine the event CrossingBars by the event
CrossingCloseReq that sets the actuators closing the barriers in response to
the close request from the train. Clearly, in the case of communication failure
occurrence during the close request transmission, both barriers remain open.

Moreover, the abstract event CrossingStatusReq is refined by two events
CrossingStatusReq1 and CrossingStatusReq2 to model a reaction of the
crossing controller on the status request. The former event is used to model

12



Machine RailwayCrossing R2
Variables . . . , close snd, close rcv, status snd, status rcv,

close com failure, status com failure, sensor1, sensor2 . . .

Invariants · · ·
Events · · ·
TrainCloseReq =̂
when

phase = Train ∧ train pos = CRP

then

close req snd := TRUE || phase := Crossing

end

· · ·
CrossingCloseReq =̂
when

phase = Crossing ∧ close req snd = TRUE ∧ comm tc = FALSE

then

bar1, bar2 :| bar′
1
∈ BAR POS ∧ bar′

2
∈ BAR POS∧

(close comm failure = TRUE ⇒ bar′
1
= Opened∧ bar′

2
= Opened)

close req rcv : |close req rcv′ ∈ BOOL ∧ (close req rcv′ = TRUE ⇔
close comm failure = FALSE)

comm tc := TRUE || phase := Env

end

CrossingStatusReq1 =̂
when

phase = Crossing ∧ status req snd = TRUE ∧ close req rcv = TRUE ∧
sens reading = FALSE ∧ comm tc = FALSE

then

release snd :| release snd′ ∈ BOOL ∧ (release snd′ = TRUE ⇔
status comm failure = FALSE ∧ sensor1 = Closed ∧ sensor2 = Closed)

status req rcv : |status req rcv′ ∈ BOOL ∧ (status req rcv′ = TRUE ⇔
status comm failure = FALSE)

comm tc := TRUE || phase := Env

end

· · ·
ReadSensors =̂
when

phase = Crossing ∧ status req snd = TRUE ∧ sens reading = TRUE

then

sensor1 :∈ {bar1, bnot(bar1)} || sensor2 :∈ {bar2, bnot(bar2)} || sens reading :=
FALSE

end

Figure 5: Railway crossing: second refinement

the situation when the close request has been successfully received (at the
previous stage) and the latter one models the opposite situation. Notice that
in the refined event CrossingStatusReq1 the controller sends the release
signal only when it has received both request signals and identified that both
barriers are closed. This interconnection is reflected in the safety invariant
saf inv3.

saf inv3 : train pos = SRP ∧ phase = Env ⇒

(release snd = TRUE ⇔ close req rcv = TRUE ∧

status req rcv = TRUE ∧ sensor1 = Closed ∧ sensor2 = Closed)

Here the variables sensor1 and sensor2 represent values of the barrier posi-
tioning sensors. Let us remind that the sensors are unreliable and can return
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the actual position of the barriers incorrectly. Specifically, the sensors can
get stuck at their previous values or spontaneously change the values to the
opposite ones. In addition, to model the communication failures, we add two
new events CloseComm and StatusComm. These events are similar to the
ReleaseComm event of the RailwayCrossing R1 machine. Rather intuitive
dependencies between the train requests delivery and communication failure
occurrences are defined by a pair of safety invariants saf inv4 and saf inv5.

saf inv4 : train pos = SRP ∧ phase = Env ⇒

(status req rcv = TRUE ⇔ status com failure = FALSE)

saf inv5 : train pos = CRP ∧ phase = Env ⇒

(close req rcv = TRUE ⇔ close com failure = FALSE)

The third refinement. In the third refinement step – the Event-B ma-
chine RailwayCrossing R3 – we refine the remaining abstract representa-
tion of components mentioned in the safety requirement (1), i.e., modelling
of the barrier motors and positioning sensors. We introduce the new vari-
ables bar failure1, bar failure2, sensor failure1 and sensor failure2 to
model the hardware failures. These variables are assigned probabilistically
in the newly introduced events BarStatus and SensorStatus in the same
way as it was done for the communication and emergency brakes failures in
the first refinement. We refine CrossingCloseReq and ReadSensors events
accordingly. Finally, we formulate four safety invariants saf inv6, saf inv7,
saf inv8 and saf inv9 to specify the correlation between the physical posi-
tion of the barriers, the sensor readings, and the hardware failures.

saf inv6 : train pos = CRP ∧ phase = Env ⇒ (bar1 = Closed ⇔

bar failure1 = FALSE ∧ close comm failure = FALSE)

saf inv7 : train pos = CRP ∧ phase = Env ⇒ (bar2 = Closed ⇔

bar failure2 = FALSE ∧ close comm failure = FALSE)

saf inv8 : train pos = SRP ∧ phase = Env ⇒ (sensor1 = Closed ⇔

((bar1 = Closed ∧ sensor failure1 = FALSE) ∨

(bar1 = Opened ∧ sensor failure1 = TRUE)))

saf inv9 : train pos = SRP ∧ phase = Env ⇒ (sensor2 = Closed ⇔

((bar2 = Closed ∧ sensor failure2 = FALSE) ∨

(bar2 = Opened ∧ sensor failure2 = TRUE)))
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The first two invariants state that the crossing barrier can be closed (in the
post-state) only when the controller has received the close request and the
barrier motor has not failed to start. The second pair of invariants postulates
that the positioning sensor may return the value Closed in two cases – when
the barrier is closed and the sensor works properly, or when the barrier has
got stuck while opened and the sensor misreads its position.

Once we have formulated the last four safety invariants, there is no longer
any variable, in the safety property (1), that cannot be expressed via some
probabilistically updated variables introduced during the refinement process.
This allows us to calculate the probability PSAF that (1) is preserved by the
system:

PSAF = P{(bar1 = Closed ∧ bar2 = Closed) ∨ emrg brakes = TRUE} =

P{bar1 = Closed ∧ bar2 = Closed}+ P{emrg brakes = TRUE} −

P{bar1 = Closed ∧ bar2 = Closed} ·

P{emrg brakes = TRUE | bar1 = Closed ∧ bar2 = Closed}.

Let us recall that we have idenified four different types of failures in our sys-
tem – the communication failure, the failure of the barrier motor, the sensor
failure and emergency brakes failure. We suppose that the probabilities of
all these failures are constant and equal to p1, p2, p3 and p4 correspondingly.
The first probability presented in the sum above can be trivially calculated
based on the safety invariants saf inv7 and saf inv8:

P{bar1 = Closed ∧ bar2 = Closed} =

P{bar failure1 = FALSE ∧ bar failure2 = FALSE ∧

close comm failure = FALSE} = (1− p1) · (1− p2)
2.

Indeed, both barriers are closed only when the crossing controller received
the close request and none of the barrier motors has failed. The calculation of
the other two probabilities is slightly more complicated. Nevertheless, they
can be straightforwardly obtained using all the safety invariants defined in the
model and basic rules for calculating probability. We omit the computation
details due to a lack of space. The resulting probability of preservation of
the safety property (1) is:

PSAF = (1− p1) · (1− p2)
2+

(1− p4) ·
(
1− (1− p1)

3 · (p2 · p3 + (1− p2) · (1− p3))
2
)
−

(1− p1) · (1− p2)
2 · (1− p4) ·

(
1− (1− p1)

2 · (1− p3)
2
)
.

Please note that PSAF is defined as a function of probabilities of component
failures, i.e., probabilities p1, . . . , p4. Provided the numerical values of them
are given, we can use the obtained formula to verify whether the system
achieves the desired safety threshold.
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5 Discussion

5.1 Related Work

Formal methods are extensively used for the development and verification
of safety-critical systems. In particular, the B Method and Event-B are
successfully being applied for formal development of railway systems [12,
5]. A safety analysis of the formal model of a radio-based railway crossing
controller has also been performed with the KIV theorem prover [16, 15].
However, the approaches for integrating formal verification and quantitative
assessment are still scarce.

Usually, quantitative analysis of safety relies on probabilistic model check-
ing techniques. For instance, in [11], the authors demonstrate how the quanti-
tative model checker PRISM [17] can be used to evaluate system dependabil-
ity attributes. The work reported in [8] presents model-based probabilistic
safety assessment based on generating PRISM specifications from Simulink
diagrams annotated with failure logic. A method pFMEA (probabilistic Fail-
ure Modes and Effect Analysis) also relies on the PRISM model checker to
conduct quantitative analysis of safety [9]. The approach integrates the fail-
ure behaviour into the system model described in continuous time Markov
chains via failure injection. In [14] the authors propose a method for proba-
bilistic model-based safety analysis for synchronous parallel systems. It has
been shown that different types of failures, in particular per-time and per-
demand, can be modelled and analysed using probabilistic model checking.

However, in general the methods based on model checking aim at safety
evaluation of already developed systems. They extract a model eligible for
probabilistic analysis and evaluate impact of various system parameters on
its safety. In our approach, we aim at providing the designers with a safety-
explicit development method. Indeed, safety analysis is essentially integrated
into system development by refinement. It allows us to perform quantitative
assessment of safety within proof-based verification of the system behaviour.

5.2 Conclusions

In this paper we have proposed an approach to integrating quantitative safety
assessment into formal system development in Event-B. The main merit of
our approach is that of merging logical (qualitative) reasoning about cor-
rectness of system behaviour with probabilistic (quantitative) analysis of its
safety. An application of our approach allows the designers to obtain a prob-
ability of hazard occurrence as a function over probabilities of component
failures.

Essentially, our approach sets the guidelines for safety-explicit develop-
ment in Event-B. We have shown how to explicitly define safety properties at
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different levels of refinement. The refinement process has facilitated not only
correctness-preserving model transformations but also establishes a logical
link between safety conditions at different levels of abstraction. It leads to
deriving a logical representation of hazardous conditions. An explicit mod-
elling of probabilities of component failures has allowed us to calculate the
likelihood of hazard occurrence. The B Method and Event-B are successfully
and intensively used in the development of safety-critical systems, partic-
ularly in the railway domain. We believe that our approach provides the
developers with a promising solution unifying formal verification and quan-
titative reasoning.

In our future work we are planning to further extend the proposed ap-
proach to enable probabilistic safety assessment at the architectural level.
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Appendix

MACHINE RailroadCrossing

SEES RailroadCrossing ctx

VARIABLES

train pos

phase

emrg brakes

bar 2

bar 1

INVARIANTS

inv1 : train pos ∈ POS SET

inv2 : phase ∈ PHASES

inv3 : emrg brakes ∈ BOOL

inv4 : phase ∈ {Env ,Train,Crossing}

inv7 : bar 2 ∈ BAR POS

inv6 : bar 1 ∈ BAR POS

inv8 : phase 6= Env ⇒ train pos 6= 0

EVENTS

Initialisation

begin

act1 : train pos := 0

act2 : phase := Env

act3 : emrg brakes := FALSE

act5 : bar 2 := Opened

act4 : bar 1 := Opened

end

Event UpdatePos1 =̂

when

grd1 : phase = Env

grd2 : emrg brakes = FALSE

grd3 : train pos < DS

then
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act1 : train pos := min({p|p ∈ POS SET ∧ p > train pos})

act2 : phase := Train

end

Event UpdatePos2 =̂

when

grd1 : phase = Env

grd2 : (emrg brakes = FALSE ∧ train pos = DS ) ∨ emrg brakes =
TRUE

then

skip

end

Event TrainIdle =̂

when

grd1 : phase = Train

grd2 : train pos 6= SRS

then

act1 : phase := Crossing

end

Event TrainReact =̂

when

grd1 : phase = Train

grd2 : train pos = SRS

then

act1 : emrg brakes :∈ BOOL

act2 : phase := Crossing

end

Event CrossingBars =̂

when

grd1 : phase = Crossing

grd2 : train pos = CRP

then

act1 : bar 1 :∈ BAR POS

act2 : bar 2 :∈ BAR POS
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act3 : phase := Env

end

Event CrossingIdle =̂

when

grd1 : phase = Crossing

grd2 : train pos 6= CRP

then

act1 : phase := Env

end

END
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CONTEXT RailroadCrossing ctx

SETS

PHASES

BAR POS

CONSTANTS

CRP Close Request Period

SRP Status Request Period

SRS Safe Reaction Spot

DS Danger Spot

POS SET

Env Environment (train movement)

Train Train controller/actuators phase

Crossing Crossing controller/actuators phase

Opened

Closed

bnot

AXIOMS

axm1 : CRP ∈ N1

axm2 : SRP ∈ N1

axm3 : SRS ∈ N1

axm4 : DS ∈ N1

axm6 : CRP < SRP

axm7 : SRP < SRS

axm8 : SRS < DS

axm10 : partition(PHASES , {Env}, {Train}, {Crossing})

axm11 : partition(BAR POS , {Opened}, {Closed})

axm13 : POS SET ⊆ N

axm12 : POS SET = {0 ,CRP ,SRP ,SRS ,DS}

axm14 : bnot ∈ BAR POS → BAR POS

axm15 : bnot(Opened) = Closed

axm16 : bnot(Closed) = Opened

thm1 : ∀x ·x ∈ BAR POS ⇒ ({x , bnot(x )} = BAR POS )

END
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MACHINE RailroadCrossing R1

REFINES RailroadCrossing

SEES RailroadCrossing ctx

VARIABLES

train pos

phase

emrg brakes

bar 2

bar 1

release snd

release rcv

communication ct

deceleration

emrg brakes failure

release comm failure

INVARIANTS

inv1 : release snd ∈ BOOL

inv2 : release rcv ∈ BOOL

inv3 : communication ct ∈ BOOL

inv4 : deceleration ∈ BOOL

inv5 : emrg brakes failure ∈ BOOL

inv6 : release comm failure ∈ BOOL

inv7 : train pos = SRS ∧ phase = Crossing ⇒ (emrg brakes = TRUE ⇔
release rcv = FALSE ∧ emrg brakes failure = FALSE )

inv8 : train pos = SRS ∧ phase = Crossing ⇒ (release rcv = FALSE ⇔
release snd = FALSE ∨ release comm failure = TRUE )

EVENTS

Initialisation

extended

begin

act1 : train pos := 0

act2 : phase := Env

act3 : emrg brakes := FALSE
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act5 : bar 2 := Opened

act4 : bar 1 := Opened

act6 : release snd := FALSE

act7 : release rcv := FALSE

act8 : communication ct := TRUE

act9 : deceleration := TRUE

act10 : emrg brakes failure := FALSE

act11 : release comm failure := FALSE

end

Event UpdatePos1 =̂

extends UpdatePos1

when

grd1 : phase = Env

grd2 : emrg brakes = FALSE

grd3 : train pos < DS

then

act1 : train pos := min({p|p ∈ POS SET ∧ p > train pos})

act2 : phase := Train

end

Event UpdatePos2 =̂

extends UpdatePos2

when

grd1 : phase = Env

grd2 : (emrg brakes = FALSE ∧ train pos = DS) ∨ emrg brakes =
TRUE

then

skip

end

Event TrainIdle =̂

extends TrainIdle

when

grd1 : phase = Train

grd2 : train pos 6= SRS

then
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act1 : phase := Crossing

end

Event TrainRelease1 =̂

refines TrainReact

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release comm failure = FALSE

grd4 : release snd = TRUE

grd5 : communication ct = FALSE

grd6 : deceleration = FALSE

then

act1 : emrg brakes := FALSE

act2 : phase := Crossing

act3 : release rcv := TRUE

end

Event TrainRelease2 =̂

refines TrainReact

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release comm failure = TRUE

grd4 : release snd = TRUE

grd5 : communication ct = FALSE

grd6 : deceleration = FALSE

then

act1 : emrg brakes : |emrg brakes ′ ∈ BOOL∧(emrg brakes ′ = TRUE⇔
emrg brakes failure = FALSE )

act2 : phase := Crossing

act3 : release rcv := FALSE

end

Event TrainStop =̂

refines TrainReact

when
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grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release snd = FALSE

grd4 : deceleration = FALSE

then

act1 : emrg brakes : |emrg brakes ′ ∈ BOOL∧(emrg brakes ′ = TRUE⇔
emrg brakes failure = FALSE )

act2 : phase := Crossing

act3 : release rcv := FALSE

end

Event CrossingBars =̂

extends CrossingBars

when

grd1 : phase = Crossing

grd2 : train pos = CRP

then

act1 : bar 1 :∈ BAR POS

act2 : bar 2 :∈ BAR POS

act3 : phase := Env

end

Event CrossingStatusReq =̂

refines CrossingIdle

when

grd1 : phase = Crossing

grd2 : train pos = SRP

then

act1 : release snd :∈ BOOL

act2 : phase := Env

end

Event CrossingIdle =̂

refines CrossingIdle

when

grd1 : phase = Crossing

grd2 : train pos ∈ {SRS ,DS}
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then

act1 : phase := Env

act2 : release snd := FALSE

end

Event ReleaseComm =̂

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release snd = TRUE

grd4 : communication ct = TRUE

then

act1 : release comm failure :∈ BOOL

act2 : communication ct := FALSE

end

Event TrainDec =̂

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : deceleration = TRUE

then

act1 : emrg brakes failure :∈ BOOL

act2 : deceleration := FALSE

end

END
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MACHINE RailroadCrossing R2

REFINES RailroadCrossing R1

SEES RailroadCrossing ctx

VARIABLES

train pos

phase

emrg brakes

bar 2

bar 1

release snd

release rcv

communication ct

deceleration

emrg brakes failure

release comm failure

close req snd

close req rcv

status req snd

status req rcv

sens reading

sensor 1

sensor 2

communication tc

close comm failure

status comm failure

INVARIANTS

inv1 : close req snd ∈ BOOL

inv2 : close req rcv ∈ BOOL

inv3 : status req snd ∈ BOOL

inv4 : status req rcv ∈ BOOL

inv5 : sens reading ∈ BOOL

inv6 : sensor 1 ∈ BAR POS

inv7 : sensor 2 ∈ BAR POS
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inv8 : communication tc ∈ BOOL

inv9 : close comm failure ∈ BOOL

inv10 : status comm failure ∈ BOOL

inv11 : train pos = SRP∧phase = Env⇒(release snd = TRUE⇔close req rcv =
TRUE ∧ status req rcv = TRUE ∧ sensor 1 = Closed ∧ sensor 2 =
Closed)

inv12 : train pos = SRP ∧ phase = Env ⇒ (status req rcv = TRUE ⇔
status comm failure = FALSE )

inv13 : train pos = CRP ∧ phase = Env ⇒ (close req rcv = TRUE ⇔
close comm failure = FALSE )

inv14 : phase = Crossing ⇒ (close req snd = TRUE ⇔ train pos = CRP)

inv15 : phase = Crossing ⇒ (status req snd = TRUE ⇔ train pos = SRP)

inv16 : close req snd = TRUE ⇒ status req snd = FALSE

inv17 : train pos < SRP ⇒ status req snd = FALSE

inv18 : train pos > SRP ⇒ close req snd = FALSE

inv19 : train pos = SRP ∧ phase = Env ⇒ close req snd = FALSE

inv20 : train pos = DS ⇒ status req snd = FALSE

inv21 : train pos = SRS ∧ phase = Env ⇒ status req snd = FALSE

EVENTS

Initialisation

extended

begin

act1 : train pos := 0

act2 : phase := Env

act3 : emrg brakes := FALSE

act5 : bar 2 := Opened

act4 : bar 1 := Opened

act6 : release snd := FALSE

act7 : release rcv := FALSE

act8 : communication ct := TRUE

act9 : deceleration := TRUE

act10 : emrg brakes failure := FALSE

act11 : release comm failure := FALSE

act12 : close req snd := FALSE

act13 : close req rcv := FALSE

act14 : status req snd := FALSE
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act15 : status req rcv := FALSE

act16 : sens reading := TRUE

act17 : sensor 1 := Opened

act18 : sensor 2 := Opened

act19 : communication tc := TRUE

act20 : close comm failure := FALSE

act21 : status comm failure := FALSE

end

Event UpdatePos1 =̂

extends UpdatePos1

when

grd1 : phase = Env

grd2 : emrg brakes = FALSE

grd3 : train pos < DS

then

act1 : train pos := min({p|p ∈ POS SET ∧ p > train pos})

act2 : phase := Train

end

Event UpdatePos2 =̂

extends UpdatePos2

when

grd1 : phase = Env

grd2 : (emrg brakes = FALSE ∧ train pos = DS) ∨ emrg brakes =
TRUE

then

skip

end

Event TrainCloseReq =̂

refines TrainIdle

when

grd1 : phase = Train

grd2 : train pos = CRP

then

act1 : phase := Crossing
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act2 : close req snd := TRUE

end

Event TrainStatusReq =̂

refines TrainIdle

when

grd1 : phase = Train

grd2 : train pos = SRP

then

act1 : status req snd := TRUE

act2 : close req snd := FALSE

act3 : phase := Crossing

end

Event TrainRelease1 =̂

extends TrainRelease1

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release comm failure = FALSE

grd4 : release snd = TRUE

grd5 : communication ct = FALSE

grd6 : deceleration = FALSE

then

act1 : emrg brakes := FALSE

act2 : phase := Crossing

act3 : release rcv := TRUE

act4 : status req snd := FALSE

end

Event TrainRelease2 =̂

extends TrainRelease2

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release comm failure = TRUE

grd4 : release snd = TRUE
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grd5 : communication ct = FALSE

grd6 : deceleration = FALSE

then

act1 : emrg brakes : |emrg brakes′ ∈ BOOL∧(emrg brakes′ = TRUE⇔
emrg brakes failure = FALSE)

act2 : phase := Crossing

act3 : release rcv := FALSE

act4 : status req snd := FALSE

end

Event TrainStop =̂

extends TrainStop

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release snd = FALSE

grd4 : deceleration = FALSE

then

act1 : emrg brakes : |emrg brakes′ ∈ BOOL∧(emrg brakes′ = TRUE⇔
emrg brakes failure = FALSE)

act2 : phase := Crossing

act3 : release rcv := FALSE

act4 : status req snd := FALSE

end

Event TrainDangerSpot =̂

refines TrainIdle

when

grd1 : phase = Train

grd2 : train pos = DS

then

act1 : phase := Crossing

end

Event CrossingCloseReq =̂

refines CrossingBars

when
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grd1 : phase = Crossing

grd2 : close req snd = TRUE

grd3 : communication tc = FALSE

then

act1 : bar 1 , bar 2 : |bar 1 ′ ∈ BAR POS ∧ bar 2 ′ ∈ BAR POS ∧
(close comm failure = TRUE ⇒ bar 1 ′ = Opened ∧ bar 2 ′ =
Opened)

act3 : close req rcv : |close req rcv ′ ∈ BOOL∧(close req rcv ′ = TRUE⇔
close comm failure = FALSE )

act4 : communication tc := TRUE

act5 : phase := Env

end

Event CrossingStatusReq1 =̂

refines CrossingStatusReq

when

grd1 : phase = Crossing

grd2 : status req snd = TRUE

grd3 : close req rcv = TRUE

grd4 : sens reading = FALSE

grd5 : communication tc = FALSE

then

act1 : release snd : |release snd ′ ∈ BOOL ∧ (release snd ′ = TRUE ⇔
(status comm failure = FALSE ∧sensor 1 = Closed ∧sensor 2 =
Closed))

act2 : status req rcv : |status req rcv ′ ∈ BOOL ∧ (status req rcv ′ =
TRUE ⇔ status comm failure = FALSE )

act3 : communication tc := TRUE

act4 : phase := Env

end

Event CrossingStatusReq2 =̂

refines CrossingStatusReq

when

grd1 : phase = Crossing

grd2 : status req snd = TRUE

grd3 : close req rcv = FALSE

grd4 : sens reading = FALSE
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grd5 : communication tc = FALSE

then

act1 : status req rcv : |status req rcv ′ ∈ BOOL ∧ (status req rcv ′ =
TRUE ⇔ status comm failure = FALSE )

act2 : release snd := FALSE

act3 : communication tc := TRUE

act4 : phase := Env

end

Event CrossingIdle =̂

refines CrossingIdle

when

grd1 : phase = Crossing

grd2 : close req snd = FALSE

grd3 : status req snd = FALSE

then

act1 : phase := Env

act2 : release snd := FALSE

end

Event ReleaseComm =̂

extends ReleaseComm

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release snd = TRUE

grd4 : communication ct = TRUE

then

act1 : release comm failure :∈ BOOL

act2 : communication ct := FALSE

end

Event TrainDec =̂

extends TrainDec

when

grd1 : phase = Train

grd2 : train pos = SRS
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grd3 : deceleration = TRUE

then

act1 : emrg brakes failure :∈ BOOL

act2 : deceleration := FALSE

end

Event CloseComm =̂

when

grd1 : phase = Crossing

grd2 : close req snd = TRUE

grd3 : communication tc = TRUE

then

act1 : close comm failure :∈ BOOL

act2 : communication tc := FALSE

end

Event StatusComm =̂

when

grd1 : phase = Crossing

grd2 : status req snd = TRUE

grd3 : communication tc = TRUE

then

act1 : status comm failure :∈ BOOL

act2 : communication tc := FALSE

end

Event ReadSensors =̂

when

grd1 : phase = Crossing

grd2 : status req snd = TRUE

grd3 : sens reading = TRUE

then

act1 : sensor 1 :∈ {bar 1 , bnot(bar 1 )}

act2 : sensor 2 :∈ {bar 2 , bnot(bar 2 )}

act3 : sens reading := FALSE

end

END
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MACHINE RailwayCrossing R3

REFINES RailroadCrossing R2

SEES RailroadCrossing ctx

VARIABLES

train pos

phase

emrg brakes

bar 2

bar 1

release snd

release rcv

communication ct

deceleration

emrg brakes failure

release comm failure

close req snd

close req rcv

status req snd

status req rcv

sens reading

sensor 1

sensor 2

communication tc

close comm failure

status comm failure

bar failure 1

bar failure 2

sensor failure 1

sensor failure 2

closing

sensing

INVARIANTS

inv1 : bar failure 1 ∈ BOOL
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inv2 : bar failure 2 ∈ BOOL

inv3 : sensor failure 1 ∈ BOOL

inv4 : sensor failure 2 ∈ BOOL

inv5 : closing ∈ BOOL

inv6 : sensing ∈ BOOL

inv7 : train pos = CRP∧phase = Env⇒(bar 1 = Closed⇔bar failure 1 =
FALSE∧close comm failure = FALSE )∧(bar 2 = Closed⇔bar failure 2 =
FALSE ∧ close comm failure = FALSE )

inv8 : train pos = SRP ∧ phase = Env ⇒ (sensor 1 = Closed ⇔ ((bar 1 =
Closed∧sensor failure 1 = FALSE )∨(bar 1 = Opened∧sensor failure 1 =
TRUE )))∧(sensor 2 = Closed⇔((bar 2 = Closed∧sensor failure 2 =
FALSE ) ∨ (bar 2 = Opened ∧ sensor failure 2 = TRUE )))

inv9 : sens reading = FALSE ⇒ (sensor 1 = Closed ⇔ ((bar 1 = Closed ∧
sensor failure 1 = FALSE ) ∨ (bar 1 = Opened ∧ sensor failure 1 =
TRUE )))∧(sensor 2 = Closed⇔((bar 2 = Closed∧sensor failure 2 =
FALSE ) ∨ (bar 2 = Opened ∧ sensor failure 2 = TRUE )))

inv10 : sensing = TRUE ⇒ sens reading = TRUE

inv11 : sens reading = FALSE ⇒ train pos > CRP

EVENTS

Initialisation

extended

begin

act1 : train pos := 0

act2 : phase := Env

act3 : emrg brakes := FALSE

act5 : bar 2 := Opened

act4 : bar 1 := Opened

act6 : release snd := FALSE

act7 : release rcv := FALSE

act8 : communication ct := TRUE

act9 : deceleration := TRUE

act10 : emrg brakes failure := FALSE

act11 : release comm failure := FALSE

act12 : close req snd := FALSE

act13 : close req rcv := FALSE

act14 : status req snd := FALSE

act15 : status req rcv := FALSE

act16 : sens reading := TRUE
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act17 : sensor 1 := Opened

act18 : sensor 2 := Opened

act19 : communication tc := TRUE

act20 : close comm failure := FALSE

act21 : status comm failure := FALSE

act22 : bar failure 1 := FALSE

act23 : bar failure 2 := FALSE

act24 : sensor failure 1 := FALSE

act25 : sensor failure 2 := FALSE

act26 : closing := TRUE

act27 : sensing := TRUE

end

Event UpdatePos1 =̂

extends UpdatePos1

when

grd1 : phase = Env

grd2 : emrg brakes = FALSE

grd3 : train pos < DS

then

act1 : train pos := min({p|p ∈ POS SET ∧ p > train pos})

act2 : phase := Train

end

Event UpdatePos2 =̂

extends UpdatePos2

when

grd1 : phase = Env

grd2 : (emrg brakes = FALSE ∧ train pos = DS) ∨ emrg brakes =
TRUE

then

skip

end

Event TrainCloseReq =̂

extends TrainCloseReq

when
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grd1 : phase = Train

grd2 : train pos = CRP

then

act1 : phase := Crossing

act2 : close req snd := TRUE

end

Event TrainStatusReq =̂

extends TrainStatusReq

when

grd1 : phase = Train

grd2 : train pos = SRP

then

act1 : status req snd := TRUE

act2 : close req snd := FALSE

act3 : phase := Crossing

end

Event TrainRelease1 =̂

extends TrainRelease1

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release comm failure = FALSE

grd4 : release snd = TRUE

grd5 : communication ct = FALSE

grd6 : deceleration = FALSE

then

act1 : emrg brakes := FALSE

act2 : phase := Crossing

act3 : release rcv := TRUE

act4 : status req snd := FALSE

end

Event TrainRelease2 =̂

extends TrainRelease2

when
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grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release comm failure = TRUE

grd4 : release snd = TRUE

grd5 : communication ct = FALSE

grd6 : deceleration = FALSE

then

act1 : emrg brakes : |emrg brakes′ ∈ BOOL∧(emrg brakes′ = TRUE⇔
emrg brakes failure = FALSE)

act2 : phase := Crossing

act3 : release rcv := FALSE

act4 : status req snd := FALSE

end

Event TrainStop =̂

extends TrainStop

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release snd = FALSE

grd4 : deceleration = FALSE

then

act1 : emrg brakes : |emrg brakes′ ∈ BOOL∧(emrg brakes′ = TRUE⇔
emrg brakes failure = FALSE)

act2 : phase := Crossing

act3 : release rcv := FALSE

act4 : status req snd := FALSE

end

Event TrainDangerSpot =̂

extends TrainDangerSpot

when

grd1 : phase = Train

grd2 : train pos = DS

then

act1 : phase := Crossing

end
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Event CrossingCloseReq1 =̂

refines CrossingCloseReq

when

grd1 : phase = Crossing

grd2 : close req snd = TRUE

grd3 : communication tc = FALSE

grd4 : closing = FALSE

grd5 : close comm failure = FALSE

then

act1 : bar 1 : |bar 1 ′ ∈ BAR POS∧(bar 1 ′ = Closed⇔bar failure 1 =
FALSE )

act2 : bar 2 : |bar 2 ′ ∈ BAR POS∧(bar 2 ′ = Closed⇔bar failure 2 =
FALSE )

act3 : close req rcv := TRUE

act4 : communication tc := TRUE

act5 : phase := Env

end

Event CrossingCloseReq2 =̂

refines CrossingCloseReq

when

grd1 : phase = Crossing

grd2 : close req snd = TRUE

grd3 : communication tc = FALSE

grd4 : closing = FALSE

grd5 : close comm failure = TRUE

then

act1 : bar 1 , bar 2 := Opened ,Opened

act2 : close req rcv := FALSE

act3 : communication tc := TRUE

act4 : phase := Env

end

Event CrossingStatusReq1 =̂

extends CrossingStatusReq1

when

grd1 : phase = Crossing
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grd2 : status req snd = TRUE

grd3 : close req rcv = TRUE

grd4 : sens reading = FALSE

grd5 : communication tc = FALSE

then

act1 : release snd : |release snd′ ∈ BOOL∧(release snd′ = TRUE⇔
(status comm failure = FALSE∧sensor 1 = Closed∧sensor 2 =
Closed))

act2 : status req rcv : |status req rcv′ ∈ BOOL∧(status req rcv′ =
TRUE⇔ status comm failure = FALSE)

act3 : communication tc := TRUE

act4 : phase := Env

end

Event CrossingStatusReq2 =̂

extends CrossingStatusReq2

when

grd1 : phase = Crossing

grd2 : status req snd = TRUE

grd3 : close req rcv = FALSE

grd4 : sens reading = FALSE

grd5 : communication tc = FALSE

then

act1 : status req rcv : |status req rcv′ ∈ BOOL∧(status req rcv′ =
TRUE⇔ status comm failure = FALSE)

act2 : release snd := FALSE

act3 : communication tc := TRUE

act4 : phase := Env

end

Event CrossingIdle =̂

extends CrossingIdle

when

grd1 : phase = Crossing

grd2 : close req snd = FALSE

grd3 : status req snd = FALSE

then

act1 : phase := Env
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act2 : release snd := FALSE

end

Event ReleaseComm =̂

extends ReleaseComm

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : release snd = TRUE

grd4 : communication ct = TRUE

then

act1 : release comm failure :∈ BOOL

act2 : communication ct := FALSE

end

Event TrainDec =̂

extends TrainDec

when

grd1 : phase = Train

grd2 : train pos = SRS

grd3 : deceleration = TRUE

then

act1 : emrg brakes failure :∈ BOOL

act2 : deceleration := FALSE

end

Event CloseComm =̂

extends CloseComm

when

grd1 : phase = Crossing

grd2 : close req snd = TRUE

grd3 : communication tc = TRUE

then

act1 : close comm failure :∈ BOOL

act2 : communication tc := FALSE

end
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Event StatusComm =̂

extends StatusComm

when

grd1 : phase = Crossing

grd2 : status req snd = TRUE

grd3 : communication tc = TRUE

then

act1 : status comm failure :∈ BOOL

act2 : communication tc := FALSE

end

Event ReadSensors =̂

refines ReadSensors

when

grd1 : phase = Crossing

grd2 : status req snd = TRUE

grd3 : sens reading = TRUE

grd4 : sensing = FALSE

then

act1 : sensor 1 : |sensor 1 ′ ∈ BAR POS ∧ (sensor 1 ′ = bar 1 ⇔
sensor failure 1 = FALSE )

act2 : sensor 2 : |sensor 2 ′ ∈ BAR POS ∧ (sensor 2 ′ = bar 2 ⇔
sensor failure 2 = FALSE )

act3 : sens reading := FALSE

end

Event BarStatus =̂

when

grd1 : phase = Crossing

grd2 : close req snd = TRUE

grd3 : closing = TRUE

then

act1 : bar failure 1 :∈ BOOL

act2 : bar failure 2 :∈ BOOL

act3 : closing := FALSE

end
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Event SensorStatus =̂

when

grd1 : phase = Crossing

grd2 : status req snd = TRUE

grd3 : sensing = TRUE

then

act1 : sensor failure 1 :∈ BOOL

act2 : sensor failure 2 :∈ BOOL

act3 : sensing := FALSE

end

END
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