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Abstract

Solution methods for convex mixed integer nonlinear programming (MINLP) problems
have, usually, proven convergence properties if the functions involved are differentiable
and convex. For other classes of convex MINLP problems fewer results have been given.
Classical differential calculus can, though, be generalized to more general classes of
functions than differentiable, via subdifferentials and subgradients. In addition, more
general than convex functions can be included in a convex problem if the functions
involved are defined from convex level sets, instead of being defined as convex functions
only. The notion generalized convex, used in the heading of this paper, refers to such
additional properties.

The generalization for the differentiability is made by using subgradients of Clarke’s
subdifferential. Thus, all the functions in the problem are assumed to be locally Lip-
schitz continuous. The generalization of the functions is done by considering quasi-
convex functions. Thus, instead of differentiable convex functions, nondifferentiable
quasiconvex functions can be included in the actual problem formulation and a com-
bined supporting hyperplane and cutting plane approach is given for the solution of the
considered MINLP problem. Convergence to a global minimum is proved for the al-
gorithm, when minimizing an f ◦-pseudoconvex function, subject to f ◦-pseudoconvex
constraints. With some additional conditions, the proof is also valid for quasiconvex
constraint functions, which sums up the properties of the method, treated in the paper.

Keywords: Nonsmooth optimization; MINLP; Generalized convexities; Clarke gener-
alized derivatives; Cutting planes; Supporting hyperplanes
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1 Introduction

Mixed-integer problems are generally nonconvex, because of the inherent nature of the
integer variables. Classifying mixed integer problems into linear, convex or nonconvex
is, therefore, somewhat confusing. However, the classification is done on the integer re-
laxed problem. This is quite convenient since the integer requirements are, in all state of
the art mixed-integer nonlinear programming (MINLP) solvers, handled separately by
a branch-and-bound (or corresponding) procedure, while solving relaxed subproblems.

Several algorithms to solve smooth (continuously differentiable) convex MINLP
problems, have been published over the last few decades. The methods behind the
solvers are often divided into branch-and-bound (BB), decomposition, cutting plane
and outer approximation methods. In direct BB methods [14, 20, 26] and decomposition
methods [15], integer relaxed convex subproblems are solved in each node of a BB tree.
In cutting plane [32, 33] and outer approximation methods [4, 9, 13, 19], the original
MINLP problem is relaxed into a series of mixed integer linear programming (MILP)
problems. The linearly relaxed subproblems are built up of cutting planes and/or sup-
porting hyperplanes and sequentially solved as a series of subproblems, which finally
give the solution to the original convex MINLP problem. In the outer approximation
methods [3, 9, 13], NLP problems are additionally solved in order to obtain the solution
points where the supporting hyperplanes are generated. In the extended supporting hy-
perplane (ESH) methods [12, 19] a line search procedure is used to obtain these points.
In the cutting plane methods [31, 32, 33] no NLP problems are solved, since the cutting
planes are already generated at the solution points obtained from the subproblems. Usu-
ally, MILP subproblems are solved but if the objective function is quadratic, the MIQP
subproblems often result in a more efficient procedure. As shown in [32], all linearly
relaxed subproblems need not be solved to optimality, but in order to finally guaran-
tee the optimality of the MINLP solution at least, the last subproblem must be solved
to optimality. In a comparison of solving smooth convex MINLP problems in [6], it
was found in many instances, that only one MILP subproblem needed to be solved to
optimality, thus, resulting in a very efficient procedure.

Many smooth convex algorithms are already in commercial use in different solution
packages, such as GAMS, AIMM, AMPL and LINDO. Reviews of several solution
approaches can be found in [3, 4, 16]. Comparisons of the efficiency and performance of
the solvers on smooth convex problems, are additionally given, for example, in [6, 19].

Despite a large number of solvers, with proven convergence properties for differen-
tiable convex problems, the development of new algorithms for solving convex MINLP
problems is still an important activity. This is not only true because of the large number
of applied problems that can be formulated in a general convex context, but especially
because convexity induces several fundamental properties, which have to be taken into
account, in order to be able to rigorously solve generalized convex MINLP problems.
In addition, new algorithms for solving nonconvex problems need solve sequences of
convex problems [1, 21, 29], forcing additional requirements to be handled, by the con-
vex subsolver. Since convexity for functions and sets does not induce exactly the same
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reverse properties, the development of generalized algorithms is more demanding than
it turns out to be at first glance.

Today, the majority of the state of the art solvers, for convex MINLP problems, have
proven convergence properties for problems including differentiable convex functions.
However, for example, replacing gradients with subgradients, in such an algorithm does
not automatically ensure that the same convergence properties are fulfilled, even if the
constraints are convex, but nonsmooth. For example, an endless cycling behavior be-
tween the solution points from the NLP problem and the MILP masters’ problem was
obtained in the linear outer approximation (LOA) algorithm [13] by such a replacement
in [10]. This was the case, despite the fact that the convergence properties of the LOA
algorithm for smooth convex functions were still ensured. Therefore, it is important to
note that nonsmooth techniques can successfully be applied to smooth problems, but
not always vice versa.

Nonsmooth convex functions, such as abs-functions and max-functions are simple
examples of nondifferentiable functions, frequently appearing in a wide variety of prob-
lems. Nondifferentiable functions are commonly used in optimal control problems, in
mechanics, economics, data mining, machine learning, medical diagnosis etc., showing
the importance of being able to handle such functions rigorously, in a solver. General-
ized convex functions, such as fractional functions composed of a convex nominator and
a positive linear denominator, typically appear as the objective function in cyclic prob-
lems. Such fractional functions, give rise to convex level sets, are quasiconvex but not
necessarily convex. Nonsmooth convex spline functions, used for tightening the under-
estimation and improving the efficiency of certain global optimization solvers [21, 22],
exemplify the importance of also being able to solve nonsmooth convex subproblems in
global optimization algorithms.

In order to solve such problems rigorously, we introduce in this paper an algorithm
for solving generalized convex MINLP problems. The notation generalized convex,
used in the heading of the paper refers to the additional convex properties that are taken
into account in the algorithm. In the method considered, we assume all functions to be
at least locally Lipschitz continuous and f ◦-pseudoconvex. With some additional as-
sumptions the functions may be quasiconvex. Thus, in addition to differentiable convex
functions, nondifferentiable, pseudo and quasiconvex functions can be handled with this
actual method.

The solution approach, studied in the paper, has its origin in the cutting plane
method [18] and the supporting hyperplane method [30], which were introduced for
solving differentiable convex NLP problems. The cutting plane approach was extended
to smooth convex MINLP problems in [33] and further extended to handle smooth pseu-
doconvex functions both in the objective function and the constraints in [31, 32]. In
[10, 11] the cutting plane approach was generalized to be able to handle nonsmooth
f ◦-pseudoconvex functions and a regularized cutting plane method for solving non-
smooth convex MINLP problems has been given in [8]. In [25] supporting hyperplanes
were introduced as alternatives to cutting planes when solving differentiable convex
MINLP problems and in [19] a convergence proof for the differentiable convex case
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has been given and the method was named the extended supporting hyperplane method.
The convergence proof, for the supporting hyperplane approach, was extended to cover
problems including nonsmooth f ◦-pseudoconvex constraints, in [12]. In this paper, we
finally generalize the supporting hyperplane approach to MINLP problems including
f ◦-pseudoconvex functions both in the objective function as well as in the constraints.
The proof is also valid for quasiconvex constraint functions, with the restriction, that the
supports, then need to be generated at points where the subgradients are nonzero.

In the method considered in this paper, the supporting hyperplanes are generated at
solution points obtained from one or two different line searches: one for the objective
function and one for the constraints. Supports to the constraints are generated on the
boundary of the feasible region and supports to the objective function on boundaries of
decreasing level sets of the objective function. The supports to the objective function
thus form convex cones, used in the solution approach. Nevertheless, interior points for
the line searchers are needed. If an optimal integer relaxed solution point of the problem
is given or can be calculated, this point can be used as an interior point in both line
searches. However, an interior point obtained from solving an integer relaxed feasibility
problem is preferable, since such a problem can easily be solved, for example, with a
linear programming (LP) based hyperplane approach, such as the one given in the paper.
In a case where the objective function is convex, the point obtained from an integer
relaxed feasibility problem is needed only in the line search for the constraints, but is
usable for the objective function line search as well. However, if the objective function
is f ◦-pseudoconvex an optimal integer relaxed solution point is, in principle, needed
for the objective function. Such an NLP point can be calculated using the approaches
presented in [24] or in [11, 32]. However, in the paper we will show that the given
hyperplane method is able to solve a corresponding NLP problem, by itself, and thus any
other feasible interior point for the objective function as well. With a modified approach
to that presented in [32], a sequentially improved interior point for the objective function
can also be obtained and thus it is not necessary to give a presolved interior point for the
objective function in the given solution approach.

In the next sections, we will prove that the method converges to an ε-global op-
timal value, when solving problems with an f ◦-pseudoconvex objective function and
f ◦-pseudoconvex constraints. The bisection method is used in all the line searches to
ensure successful solutions. In the considered numerical examples we compare the sup-
porting hyperplane approach with the cutting plane approach in [11, 32]. Furthermore,
the use of different solution strategies are illustrated. The solver in [34] has been used
in all the computations.

To make the paper easier to read, some notations and basic information on gen-
eralized convexity and nonsmooth optimization has been provided in the first chapter.
More information on generalized convexity can be found, for example, in the textbooks
[27, 28] and on nonsmooth optimization, in the references [2, 7, 23]. In addition, the
textbook [5] can be recommended as related background material when considering
solution approaches for solving generalized convex NLP problems.
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2 Preliminaries
In this section some basic definitions and results are given on the function classes we
consider.

DEFINITION 2.1. A function f : Rn → R is locally Lipschitz continuous at a point
x ∈ Rn if there exist scalars K > 0 and δ > 0 such that

|f(y)− f(z)| ≤ K‖y − z‖ for all y, z ∈ B(x; δ),

where B(x; δ) ⊂ Rn is an open ball with center x and radius δ.

For a locally Lipschitz continuous function a gradient may not exist everywhere.
However, a Clarke subgradient can be defined at any point.

DEFINITION 2.2. [7] Let f : Rn → R be locally Lipschitz continuous at x ∈ Rn. The
Clarke generalized directional derivative of f at x in the direction d ∈ Rn is defined by

f ◦(x;d) := lim sup
y→x
t↓0

f(y + td)− f(y)

t

and the Clarke subdifferential of f at x by

∂f(x) := {ξ ∈ Rn | f ◦(x;d) ≥ ξTd for all d ∈ Rn}.

Each element ξ ∈ ∂f(x) is called a subgradient of f at x.

Note that for a smooth (i.e. continuously differentiable) function f : Rn → R we
have ∂f(x) = {∇f(x)} for any x ∈ Rn.

THEOREM 2.3. Let f : Rn → R be locally Lipschitz continuous at x ∈ Rn. Then

(i) ∂f(x) is a nonempty, convex and compact set.

(ii) ∂f(x) ⊂ B(000;K), where K is a Lipschitz constant of f at x.

(iii) f ◦(x;d) = max {ξTd | ξ ∈ ∂f(x)} for all d ∈ Rn.

(iv) f ◦(x;d) is an upper semicontinuous function of (x,d).

Proof. The proofs can be found in [7, pp. 26–27].

The following fundamental theorem presents an easy way to determine the subdif-
ferentials of a function.

THEOREM 2.4. Let f : Rn → R be locally Lipschitz continuous at x ∈ Rn. Then

∂f(x) = conv {ξ ∈ Rn | ∃(xi) ⊂ Rn\Ωf s.t. xi → x and∇f(xi)→ ξ} ,

where conv denotes the convex hull of a set and Ωf is the set of points on which function
f is not differentiable.
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Proof. The proof can be found in [7, pp. 63].

The function classes being considered can now be defined stating with a recall of
the definition of the classical pseudoconvexity.

DEFINITION 2.5. A function f : Rn → R is pseudoconvex, if it is smooth and for all
x,y ∈ Rn

f(y) < f(x) implies ∇f(x)T (y − x) < 0.

In Definition 2.5, it can also be written ∇f(x)T (y − x) = f ′(x;y − x), where
f ′ is the classical notation of the directional derivative. This will make the definition
analogous to the following generalization.

DEFINITION 2.6. A locally Lipschitz continuous function f : Rn → R is f ◦-pseudocon-
vex (f ◦-quasiconvex) if for all x,y ∈ Rn

f(y) < (≤)f(x) implies f ◦(x;y − x) < (≤)0.

It is known that a convex or pseudoconvex function is f ◦-pseudoconvex. Further-
more, an f ◦-pseudoconvex function is f ◦-quasiconvex. The level sets of all these func-
tion classes are convex. These results can be found in [2].

We say that function is l-quasiconvex if it is locally Lipschitz continuous and quasi-
convex. We can also define it in a similar way to f ◦-quasiconvexity (see e.g. [2]).

DEFINITION 2.7. A locally Lipschitz continuous function f : Rn → R is l-quasiconvex
if for all x,y ∈ Rn

f(y) < f(x) implies f ◦(x;y − x) ≤ 0.

An f ◦-quasiconvex function is l-quasiconvex, but the reverse is not always true [2].
Thus, the results that we will formulate for l-quasiconvex functions holds also for f ◦-
quasiconvex functions.

With the following lemma it can be seen that in Definition 2.6 we could use appro-
priate compact sets instead of points x and y.

LEMMA 2.8. Let f : Rn → R be f ◦-pseudoconvex. Let A,C ⊂ Rn be nonempty
compact sets such that there exists a ∈ R such that f(y) < a ≤ f(x) for all x ∈ A and
y ∈ C. Then, there exists δ > 0 such that

sup
x∈A

ξ∈∂f(x)
y∈C

ξT (y − x) = −δ.

Proof. The proof can be found in [11] Lemma 2.10.

We need an additional assumption to prove the corresponding result for l-quasiconvex
function. In addition, another lemma is first needed.

LEMMA 2.9. Let f : Rn → R be l-quasiconvex and x,y ∈ Rn. If f(y) < f(x) and
000 /∈ ∂f(x), then f ◦(x;y − x) < 0.
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Proof. The proof is similar to that of Lemma 1 in [12].

With Lemma 2.9 we can prove that if 000 ∈ ∂f(x) implies that x is a global minimum
of f , then the l-quasiconvex function f is f ◦-pseudoconvex. This result is proven in e.g.
[12] for f ◦-quasiconvex functions but the proof holds true for l-quasiconvex functions
as well.

LEMMA 2.10. Let f : Rn → R be l-quasiconvex. Let A,C ⊂ Rn be nonempty compact
sets such that there exists a ∈ R such that f(y) < a ≤ f(x) for all x ∈ A and y ∈ C.
Suppose that 000 /∈ ∂f(x) for all x ∈ A. Then, there exists δ > 0 such that

sup
x∈A

ξ∈∂f(x)
y∈C

ξT (y − x) = −δ.

Proof. We can write

sup
x∈A

ξ∈∂f(x)
y∈C

ξT (y − x) = sup
x∈A
y∈C

sup
ξ∈∂f(x)

ξT (y − x).

By Lemma 2.3 (ii)
sup

ξ∈∂f(x)
ξT (y − x) = f ◦(x;y − x).

Recall that an upper semicontinuous function attains its maximum value on a compact
set. Thus, there exists x̂ ∈ A and ŷ ∈ C such that

sup
x∈A
y∈C

f ◦(x;y − x) = f ◦(x̂; ŷ − x̂).

By Lemma 2.9 f ◦(x̂; ŷ − x̂) < 0, which completes the proof.

The following result allows us to treat locally Lipschitz continuous functions as
Lipschitz continuous ones.

LEMMA 2.11. If f : Rn → R is locally Lipschitz continuous on a compact set L, then
it is Lipschitz continuous on the set L.

3 ESH for the problem with an f ◦-pseudoconvex objec-
tive function

In this section, the extended supporting hyperplane method [12, 19] is generalized to
solve a problem with an f ◦-pseudoconvex objective function and f ◦-pseudoconvex con-
straint functions. Unlike with a convex objective function, we can not transform the f ◦-
pseudoconvex objective function f to the constraint function f−µ ≤ 0 and minimize µ,
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since generally f − µ may not be f ◦-pseudoconvex even if f is. Consider the problem:

min f(x)

s.t. gm(x) ≤ 0, ∀m = 1, . . . ,M (P)

x ∈ L ∩ Y,

where f and gm are f ◦-pseudoconvex functions and L ⊂ Rn is a convex compact
polytope defined by linear constraints. Integer variables are defined by the index set
IZ ⊆ {1, 2, . . . , n} and the set Y = {x | x ∈ Rn, xi ∈ Z if i ∈ IZ}. Naturally, all the
functions are locally Lipschitz continuous. Denote

F (x) = max
m=1,...,M

{gm(x)} ,

N = {x ∈ Rn | F (x) ≤ 0} and
I0(x) = {m | gm(x) = F (x) = 0} .

The key idea of the ESH method is to approximate the nonlinear feasible set by
supporting hyperplanes. The point at which a hyperplane is created is found through
a line search. The one end point of the line search is the obtained solution point of an
MILP subproblem. The other end point denoted by xNLP is any point from the setN ∩L
which must be given to or initially solved by the algorithm. This point is also called the
feasible point and it can be found e.g. by the algorithm presented in Section 6. It should
be noted that xNLP is a feasible point of (P) when the integer variables are relaxed to
continuous ones. For simplicity we do not mention the integer relaxation explicitly in
the next two sections.

A line search may be done on the objective function as well. Let fr be the current
upper bound for the objective function and Ipr = {x1

r,x
2
r, . . . ,x

p
r} be the set of the

found points xjr that satisfies f(xjr) = fr. On the one end point of the line search f
should attain a value that is lower than or equal to fr. Define

xfrNLP =

{
xNLP , if f(xNLP) < fr

xpr := 1
p

∑p
j=1 x

j
r , if f(xNLP) ≥ fr.

(1)

The line search for the objective function is done between the solution point of an MILP
subproblem and xfrNLP. Note that if xNLP is an optimum of the integer relaxed version
of (P), then xfrNLP = xNLP for all r. Any xNLP ∈ N ∩ L can be used as xfrNLP as long
as f(xNLP) < fr. When f(xNLP) ≥ fr the point xpr is used in the line search. Since
the level sets of the f ◦-pseudoconvex function f are convex, we have f(xpr) ≤ fr. In
theory we could use xNLP as the inner point even when f(xNLP) = fr, but we choose
the follow the equation (1).

The problem (P) is solved as a sequence of MILP problems. At iteration k we solve
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the problem

min µ

s.t. fr + ξTi (x− xif ) ≤ µ, i ∈ Ikf (2)

ξTi (x− xig) ≤ 0, i ∈ Ikg (MILPk)
x ∈ L ∩ Y, µ ∈ [µL, µU] ,

where fr is the current upper bound, µL, µU are user given bounds, ξi ∈ ∂f(xif ) if
i ∈ Ikf and ξi ∈ ∂gmi

(xig), where mi ∈ I0(xig), if i ∈ Ikg . Furthermore,

Ikf =
{
i < k | F (xiMILP) ≤ εg

}
and Ikg =

{
i < k | F (xiMILP) > εg

}
,

where εg > 0 is a tolerance parameter given by the user and (xiMILP, µ
i) is the solution

point of (MILPi). Points xig are found through a line search between points xiMILP and
xNLP. Points xif are solutions points xiMILP or, if necessary, they are found through a line
search between points xiMILP and xfrNLP. At first I1f = I1g = ∅ but after the first iteration
Ikf ∪ Ikg = {1, 2, . . . , k − 1} and Ikf ∩ Ikg = ∅.

Algorithm 3.1, presented on the next page, handles constraints in the same manner
as the ESH algorithm in [12]. The f ◦-pseudoconvex objective function is handled in a
closely related way to how the αECP method handles it in [32]. The point xfrNLP guaran-
tees that in step 4.4 we can always find a point on the contour {x ∈ Rn | f(x) = fr + εg}.
This implies that we can add a constraint of type (2) whenever F (xkMILP) ≤ εg. How-
ever, we do not need to use the constraint f(x)− fr ≤ 0 that was used in [32].

Algorithm 3.1 produces two sequences of values of the objective function. The
sequence (fr(k)) corresponds to objective function values of εg-feasible solutions of
the primal problem (P), while the sequence (µk) corresponds to the objective function
values of the linearly relaxed problems (MILPk). The εg-feasibility will be satisfied
in step 4 of the algorithm, while the final termination will occur in step 2, when the
gap between fr and µ is less than or equal to εf , i.e fr − µk ≤ εf . In Algorithm 3.1
and throughout the text we have used εg and εf as absolute tolerances for feasibility
and for the gap between fr and µk, respectively. In a numerical algorithm these can be
represented by relative tolerances.

4 The convergence proof
In what follows, we show that if εg > 0 and εf = 0 Algorithm 3.1 converges to an εg-
feasible global minimum value. A point x ∈ L∩ Y is an εg-feasible global minimum if
F (x) ≤ εg and there does not exist y ∈ N ∩ L ∩ Y such that f(y) < f(x). Then f(x)
is an εg-feasible global minimum value.

When considering the convergence of Algorithm 3.1 there is a useful result that has
already been proven in [12].
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Algorithm 3.1 The ESH algorithm

Give the tolerance parameters εg, εf > 0, give xNLP ∈ N ∩ L (can be found by e. g.
the algorithm in Section 6), set Ikg = Ikf = ∅ and k = r = p = 1. Set fr = ∞ or if an
integer feasible point x0

MILP is known let fr = f(x0
MILP), Ikf = {0}, Ipr = {x0

MILP} and
add fr + ξT (x− x0

MILP) ≤ µ, where ξ ∈ ∂f(x0
MILP), to (MILP1).

1. Solve the problem (MILPk). Denote the solution by (xkMILP, µ
k).

2. If µk ≥ fr − εf then stop: fr is the optimal value and the first element of Ipr is the
final solution.

3. If F (xkMILP) > εg, do a line search between xNLP and xkMILP to find xkg such that
F (xkg) = εg

2
. Add to the problem (MILPk+1) the linear constraint ξT (x− xkg) ≤

0, where ξ ∈ ∂gm(xkg) and gm(xkg) = F (xkg). Update Ik+1
g = Ikg ∪ {k} and

Ik+1
f = Ikf .

4. If F (xkMILP) ≤ εg then

4.1 If f(xkMILP) < fr, update r = r + 1 and p = 1. Set xkf = xkMILP, fr = f(xkf )

and Ipr =
{
xkf
}

. Update the constraints of type (2) by using the new value
fr.

4.2 If f(xkMILP) = fr, then set xkf = xkMILP, Ip+1
r = Ipr ∪

{
xkf
}

and p = p+ 1.

4.3 If fr < f(xkMILP) ≤ fr + εg, set xkf = xkMILP.

4.4 If f(xkMILP) > fr + εg, calculate xfrNLP from (1). Find xkf such that f(xkf ) =

fr + εg with a line search between xfrNLP and xkMILP.

4.5 Add to the problem (MILPk+1) the linear constraint fr + ξT (x− xkf ) ≤ µ,
where ξ ∈ ∂f(xkf ). Update Ik+1

f = Ikf ∪ {k} and Ik+1
g = Ikg .

5. Set k = k + 1 and go to step 1.
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LEMMA 4.1. If εg > 0, then the algorithm will find a point xkMILP such that F (xkMILP) ≤
εg after a finite number of iterations.

Proof. This is stated in [12] after Theorem 3.6.

The algorithm in [12] assumes a convex objective function and, thus, it is differ-
ent from Algorithm 3.1. Despite this, Lemma 4.1 is valid also when having an f ◦-
pseudoconvex objective function and the proof is similar to that in [12].

The convergence proof of Algorithm 3.1 proceeds as follows. If the algorithm stops
it is shown that the current upper bound fr is an εg-feasible minimum value. If the
algorithm does not stop after a finite number of iterations it is shown that the sequence
(µk − fr) converges to zero. Furthermore, this will imply that fr converges to an εg-
feasible minimum value.

We begin by proving a technical lemma.

LEMMA 4.2. Let i ∈ Ikf . Then ξTi (xiMILP − xif ) ≥ 0, where ξi ∈ ∂f(xif ).

Proof. If xif = xiMILP the result is true. Otherwise, xif is found through the line
search between xiMILP and xfrNLP. Since f(xfrNLP) < f(xif ) the pseudoconvexity im-
plies ξTi (xfrNLP − xif ) < 0. Due to line search xif = λxiMILP + (1 − λ)xfrNLP, for some
λ ∈ (0, 1). Thus,

ξTi (xiMILP − xif ) = −1− λ
λ

ξTi (xfrNLP − xif ) > 0,

completing the proof.

Notice that the index r is a function of the index k by Algorithm 3.1. For simplicity,
we will write r instead of r(k). Let x ∈ L and k ∈ N be arbitrary. Denote

µkx = fr + max
i<k

{
ξTi (x− xif )

}
, (3)

where ξi ∈ ∂f(xif ) is used in (MILPk). Equivalently, µkx is the minimum of the problem
(MILPk) with added constraint x = x. Clearly, if x is feasible in (MILPk) then µkx ≥
µk since µ is minimized in (MILPk).

The following theorem justifies the stopping criterion of Algorithm 3.1 when εf = 0.

THEOREM 4.3. If µk ≥ fr, then the current upper bound fr is an εg-feasible global
minimum value.

Proof. On the contrary, suppose there exists x̂ ∈ N ∩ L ∩ Y such that f(x̂) < fr. Let
C = {x̂}, A = {x ∈ Rn | f(x) ≥ fr} ∩ L and a = fr. By Lemma 2.8 there exists
δ > 0 such that

µkx̂ = fr + max
i∈Ikf

{
ξTi (x̂− xif )

}
≤ fr + sup

z∈A
ξ∈∂f(z)

{
ξT (x̂− z)

}
= fr − δ.

Since x̂ is feasible this implies µk ≤ µkx̂ < fr contradicting the assumption.
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Theorem 4.3 proves the convergence if the algorithm stops after a finite number of
iterations. The next step of the proof of the convergence is to consider the case when
the algorithm does not stop after a finite number of iterations.

In the following lemma we explicitly write r = r(k) to make the proof easier to
understand.

LEMMA 4.4. The sequence (µk − fr(k)) is increasing.

Proof. Let xkMILP be the solution to the problem (MILPk). Then

µk − fr(k) = max
i∈Ikf

{
ξTi (xkMILP − xif )

}
≥ max

i∈Ik−1
f

{
ξTi (xkMILP − xif )

}
,

where ξi ∈ ∂f(xif ). Furthermore, by (3)

max
i∈Ik−1

f

{
ξTi (xkMILP − xif )

}
= µk−1

xk
MILP
− fr(k−1) ≥ µk−1 − fr(k−1).

Thus, µk − fr(k) ≥ µk−1 − fr(k−1) for all k ∈ N.

By the stopping criterion of Algorithm 3.1, the sequence (µk − fr(k)) is bounded
above by 0. This implies with Lemma 4.4 that the sequence converges. The following
lemma proves that it converges to 0. Denote If :=

{
i | i ∈ Ikf for some k

}
=
⋃∞
k=1 I

k
f .

LEMMA 4.5. If the algorithm does not stop after a finite number of iterations, then
µk − fr → 0.

Proof. Since εg > 0 the algorithm will find an εg-feasible point after a finite number of
iterations by Lemma 4.1. Then a new index is added to the set If . Since the algorithm
does not stop, the sequence (xkMILP)k∈If must be infinite.

By the Bolzano-Weierstrass Theorem, the sequence (xkMILP)k∈If has an accumula-
tion point in the compact set L. Furthermore, there is a convergent subsequence which
is a Cauchy sequence. Then, for given ε > 0 there exists j > i such that i, j ∈ If
and xjMILP ∈ B(xiMILP; ε

K
), where K is a Lipschitz constant of f on L. Thus, for any

ξ ∈ ∂f(xif )

µj − fr ≥ ξT (xjMILP − xif ) = ξT (xjMILP − xiMILP) + ξT (xiMILP − xif )

≥ −
∥∥ξT∥∥∥∥xjMILP − xiMILP

∥∥+ 0 > −K ε

K
= −ε,

where inequality ‖ξ‖ ≤ K is obtained from Theorem 2.3 (ii) and inequality ξT (xiMILP−
xif ) ≥ 0 is proved in Lemma 4.2. Hence, the sequence (µk − fr) has a convergent
subsequence which converges to 0. Since the sequence is increasing and bounded above
it converges. Thus, µk − fr → 0.

THEOREM 4.6. If µk − fr → 0, then (fr) converges to an εg-feasible global minimum
value.

11



Proof. Since f has a lower bound on the compact set L, and (fr) is decreasing, (fr)
converges to, say, at f̂ . On the contrary, suppose that this is not an εg-feasible global
minimum value. Thus, there exists x̂ ∈ N ∩ L ∩ Y such that f(x̂) < f̂ . In Lemma 2.8
choose C = {x̂}, A =

{
x ∈ Rn | f(x) ≥ f̂

}
∩ L and a = f̂ . Then for some δ > 0,

µk − fr ≤ µkx̂ − fr ≤ sup
z∈A

ξ∈∂f(z)

{
ξT (x̂− z)

}
= −δ

for all k ∈ N. This contradicts with the assumption µk − fr → 0, which proves the
theorem.

Finally, the theorem of convergence, that sums up the previous results, is given.

THEOREM 4.7. If the nonlinear constraint functions are f ◦-pseudoconvex, Algorithm
3.1 converges to an εg-feasible global minimum value.

Proof. If µk ≥ fr for some k ∈ N, then the minimum is obtained by Theorem 4.3. On
the other hand, if µk < fr for all k ∈ N then the algorithm does not stop after a finite
number of iterations. By Lemma 4.5 (µk − fr) converges to 0. By Theorem 4.6, this
implies that the algorithm converges to an εg-feasible global minimum value.

In Algorithm 3.1 step 4.2 one could also leave out the old linearizations instead of
updating them. However, in this case and if fr is updated infinitely many times we need
to additionally require that the solution sequence has an unique accumulation point as
in [11]. When the linearizations are updated this is not needed.

Algorithm 3.1 can also solve problems with l-quasiconvex constraint functions if
an additional condition holds true. The only proof that considers constraint functions
is that of Lemma 4.1. In [12] it was noted that the lemma is true for f ◦-quasiconvex
functions gm, if 000 /∈ ∂gm(x) when a supporting hyperplane is created from gm at x.
This can be proven also for l-quasiconvex functions. The proof goes similarly to that in
[12], but we need to reformulate one theorem. This is done in the appendix.
The condition

000 /∈ ∂gm(x) for all x ∈ L ∩
{
y ∈ Rn | gm(y) =

εg
2

}
∩
{
y ∈ Rn | F (y) =

εg
2

}
(4)

for all m = 1, . . . ,M guarantees that l-quasiconvex constraint functions can be used.
We can also consider problems with an l-quasiconvex objective function with the

help of Lemmas 2.9 and 2.10. These imply that convergence proofs are valid for the
l-quasiconvex objective function if 000 /∈ ∂f(xkf ) for any point xkf where linearization of
type (2) is created.

5 Feasibility problem
In this section we consider finding an integer relaxed feasible point for (P) needed in
Algorithm 3.1. That is, the point xNLP ∈ N ∩L. For simplicity, we will write ’feasible’
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instead of ’integer relaxed feasible’ as in the title of current section. Since this is the only
type of feasibility we consider, this should not create any confusion. Due to tolerances,
we will find only an εF -feasible point. In order to guarantee that it is applicable for
Algorithm 3.1 the εF should be smaller than the given tolerance εg for Algorithm 3.1.
The integer relaxed feasibility problem of (P) is:

min µ

s.t. gm(x) ≤ µ, ∀m = 1, . . . ,M (FP)

x ∈ L, µ ∈ [µL, µU ] ,

where µL and µU are given bounds on µ. If the final solution of (FP) results in µ > εF ,
the problem (P) does not have any εF -feasible point. On the other hand, if in solving
(FP) we encounter a point (x, µ) satisfying F (x) ≤ εF , then (P) has an εF -feasible
solution. In this case, we may stop solving (FP) and declare the point x to be a feasible
point.

Denote I(x) = {m | gm(x) = F (x)}. We obtain the solution of the feasibility
problem (FP) by solving a sequence of LP problems

min µ

s.t. ξTi (x− xi) ≤ µ, i < k (LPk)
x ∈ L,

where ξi ∈ ∂gmi
(xi) is arbitrary and mi ∈ I(xi). Throughout this section ξi is the

subgradient that was chosen in the ith iteration. The first problem (LP1) is simply (FP)
without the nonlinear constraints. The algorithm to find a feasible point is presented
next.

Algorithm 5.1 The feasibility algorithm

Give a tolerance parameter εF ≥ 0 and set k = 1.

1. Solve the problem (LPk). Denote the solution by (xk, µk).

2. If F (xk) ≤ εF then stop: xk is the εF -feasible point.

3. Let mk ∈ I(xk) and ξTk ∈ ∂gmk
(xk). Create a new problem (LPk+1) by adding

the linear constraint ξTk (x− xk) ≤ µ to the problem (LPk).

4. Set k = k + 1 and go to step 1.

There are three distinct cases of problem types:

1. F (x) > εF for all x ∈ L. The original problem (P) has no εF -feasible solution.

2. There does not exist a point x ∈ L such that F (x) < εF , but there exists y ∈ L
such that F (y) = εF .
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3. There exists x ∈ L such that F (x) < εF .

In the convergence proofs we will assume that εF = 0. Then, it is clear that in case
1 Algorithm 5.1 will not stop. In case 2 the algorithm may not stop, but it will converge
to a feasible point. In case 3 the algorithm finds a feasible point after a finite number
of iterations. Case 3 (with εF = 0) can be restated so that the problem (P) satisfies the
Slater constraint qualification. We continue analysing the cases 2 and 3. Hence, from
now on we assume that a feasible point exists.

In the convergence analysis, it is first proved that the optimal values µk of (LPk)
are always negative. If the algorithm does not stop after a finite number of iterations,
the sequence (µk) converges to zero. This implies that any accumulation point of the
sequence (xk) is a feasible point.

Clearly, the sequence (µk) is increasing since for the feasible sets Ωk of problem
(LPk) we have Ωk+1 ⊆ Ωk for all k ∈ N. In a similar manner to equation (3), denote

µkx = max
i<k

{
ξTi (x− xi)

}
,

where x ∈ L. Then problem (LPk) can also be written as

min µkx
s.t. x ∈ L.

Consequently, µkx ≥ µk for any x ∈ L.
The following two lemmas sum up the results needed for the convergence in cases 2

and 3.

LEMMA 5.1. Consider Algorithm 5.1. We have for all k ∈ N
1. µk < 0

2. µk ≤ µ0 for some µ0 < 0, if the Slater constraint qualification holds true.

Proof. Let x ∈ L and F (x) ≤ 0. A linearization in Algorithm 5.1 in step 3 is made
from the constraint function gmi

only at xi where gmi
(xi) > 0 ≥ gmi

(x). The f ◦-
pseudoconvexity of the constraint functions implies ξTi (x − xi) < 0 for all i < k.
Thus,

µk ≤ µkx = max
i<k

{
ξTi (x− xi)

}
< 0,

proving the first part of the lemma.
Suppose then that there exists x ∈ L such that F (x) < 0. By choosing a = 0,

A = {y ∈ Rn | gm(y) ≥ 0} ∩ L and C = {x} in Lemma 2.8 we get for every m ∈
{1, . . . ,M} a constant δm > 0 such that

sup
z∈A

ξ∈∂gm(z)

{
ξT (x− z)

}
= −δm.

Thus, for any k ∈ N
µk ≤ µkx ≤ max

m
{−δm} < 0

and we may choose µ0 = maxm {−δm}.
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LEMMA 5.2. If Algorithm 5.1 does not stop after a finite number of iterations then the
sequence (µk) converges to zero.

Proof. By Lemma 5.1, we have µk < 0 for all k ∈ N. Thus, (µk) has an upper bound
0. Since the sequence (µk) is increasing and bounded above, it converges.

The infinite sequence (xk) has an accumulation point x̂ on the compact set L by the
Bolzano-Weierstrass Theorem. Let ε > 0 be arbitrary and xi,xj ∈ B(x̂, ε

2K
), j > i,

where K is a Lipschitz constant of F on L. Then by Theorem 2.3 (ii)

µj ≥ ξTi (xj − xi) ≥ −‖ξi‖
∥∥xj − xi∥∥ ≥ −K · 2 ε

2K
= −ε.

Hence, (µk) converges to zero.

The proof of convergence of case 2 is given below.

THEOREM 5.3. Suppose Algorithm 5.1 does not stop after a finite number of iterations.
Then any accumulation point of the sequence (xk) is feasible in the problem (P).

Proof. First, we prove that the sequence (F (xk)) converges to 0. On the contrary, we
suppose there exist ε > 0 and subsequence (xkj) such that for all j ∈ N we have
F (xkj) ≥ ε. Let m ∈ {1, 2, . . . ,M}. By choosing

Am = {x ∈ Rn | gm(x) ≥ ε} ∩ L ⊆ {x ∈ Rn | F (x) ≥ ε} ∩ L and

C =
{
x ∈ Rn | F (x) ≤ ε

2

}
∩ L

in Lemma 2.8 we obtain

sup
y∈Am
ξ∈∂f(y)
x∈C

ξT (x− y) = −δm < 0

for some δm > 0. Denote −δ = maxm {−δm}. We deduce that for any j ∈ N and
x ∈ C inequality µkjx ≤ −δ holds. Hence, µkj ≤ µ

kj
x ≤ −δ for all j ∈ N contradicting

Lemma 5.2.
Let x be an accumulation point of the sequence (xk). Then there exists a sub-

sequence (xki) such that limi→∞ x
ki = x. By continuity of F we have F (x) =

limi→∞ F (xki) = 0.

Finally, we give the proof that a feasible point is found in a finite number of steps if
the Slater constraint qualification holds true.

THEOREM 5.4. If the problem (P) satisfies the Slater constraint qualification, Algorithm
5.1 finds a feasible point after a finite number of iterations.

Proof. Suppose that Algorithm 5.1 does not converge after a finite number of iterations.
By Lemma 5.1 there exists µ0 < 0 such that

µk ≤ µ0 < 0 for all k ∈ N.

This contradicts with Lemma 5.2.
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If the constraint functions are l-quasiconvex we need an additional assumption. The
assumption is that

000 /∈ ∂gm(x) if m ∈ I(x) and x ∈ L ∩ {y ∈ Rn | gm(y) ≥ 0} (5)

for all m = 1, . . . ,M . Note that this is a more strict condition than (4), which was
needed to guarantee the global convergence of ESH for the problems with l-quasiconvex
constraint functions. When the condition (5) holds, we may use Lemma 2.10 instead of
Lemma 2.8 in the previous proofs. Furthermore, Lemma 2.10 is valid with the choices
A = {x}, where F (x) > 0, andB = {y}, where y ∈ L∩{z ∈ Rn | F (z) ≤ 0}. Then,
f ◦(x;y − x) < 0 and with this Lemma 5.1 can be proven for l-quasiconvex functions.
Hence, we could prove the convergence of Algorithm 5.1 in the same way we did with
the f ◦-pseudoconvex constraint functions.

Another way to deal with convex constraint functions would be to add the cutting
plane

g(xk) + ξTk (x− xk) ≤ µ

instead of the linear constraint in step 3 in Algorithm 5.1. However, if there is addition-
ally an f ◦-pseudoconvex constraint the algorithm may fail to find a feasible point. To
show this consider the feasibility problem

min µ

s.t. |x1| ≤ µ

arctan(|x2| − 2) ≤ µ

−2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2.

Algorithm 5.1 finds the first point from one of the corners. At this point the convex con-
straint |x1| ≤ µ is active and a cutting plane is made from that point. The second point
will be on the opposite side in terms of variable x1. A cutting plane is made from that
point. Now the convex constraint is perfectly approximated and µ can not have lower
value than 0. The next point can be any point from the line segment [(0,−2), (0, 2)].
Suppose the next point is (0, 2). The linearization done from this point is

x2 − 2 ≤ µ.

It does not have any effect on subsequent iterations since it allows µ to be 0 at the line
segment [(0,−2), (0, 2)]. Hence, the next point can be any point from the line segment
and the algorithm may form an infinite loop. Notice that this problem does not satisfy
the Slater constraint qualification. If it is satisfied, the algorithm will find a feasible
point as shown in the appendix.

If all constraint functions are convex the use of cutting planes is equal to solving
the feasibility problem with the nonsmooth ECP method [10]. Hence, the algorithm
finds a minimizer and it is easy to deduce convergence properties from this fact. If
none feasible points exist the algorithm does not stop and it finds µk > 0. If the Slater
constraint qualification does not hold but a feasible point exists, the algorithm converges
to a feasible point. If the Slater constraint qualification holds a feasible point will be
found after a finite number of iterations.
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6 Numerical examples

In this section, we solve some problems having f ◦-pseudoconvex objective function
with Algorithm 3.1 and the αECP algorithm [11, 32]. We also find a feasible point with
Algorithm 5.1 to a facility layout problem. In order to understand the solution approach
of the αECP algorithm, we revise briefly its key features.

6.1 On the αECP algorithm

The αECP algorithm takes an f ◦-pseudoconvex objective function f into account by
adding to the MINLP problem (P ) the f ◦-pseudoconvex constraint

f(x)− fr ≤ 0 (6)

and using linearizations (2). The constraint (6) guarantees that we will eventually, by
solving a sequence of MILP subproblems, find a point where a linearization of type
(2) can be done. Additional linearizations can be generated at the points that are found
through a line search between MILP solutions and the previously defined xpr (equation
(1)). Due to the use of the constraint (6), the line search is optional in αECP, contrary to
the case in the ESH algorithm. This gives a certain benefit to αECP, since the objective
function may also be restricted to be evaluated at integer points on the integer variables
only. On the other hand, if the objective function is allowed to be evaluated at relaxed
values of the integer variables, then the line search procedure makes the algorithm more
efficient.

When a new upper bound fr is found, the old constraints of type (2) are omitted
and a new one is added. Furthermore, constraint (6) is updated as well as the α-cutting
planes (defined below) generated from it.

The f ◦-pseudoconvex constraint functions are handled by creating α-cutting planes

gm(xkMILP) + αk · ξT (x− xkMILP) ≤ 0,

instead of traditional cutting planes. The constant αk is at first set to 1 and ξ ∈
∂gm(xkMILP). An α-cutting plane may cut off parts of the feasible region and this prob-
lem is resolved by updating the αk values. The updating is no longer needed if αk
satisfies inequality

αk ≥
gm(xkMILP)

‖ξ‖ εz
, (7)

where εz > 0 is a user specified parameter. The constants αk that do not satisfy in-
equality (7) are multiplied by a factor greater than 1 whenever the feasible region of an
MILP subproblem is empty or a feasible solution to the MINLP problem is found. More
details on the αECP algorithm can be found in [11, 32].
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6.2 Example problems
All of the computational results are performed by the solver described in [34]. The
MILP and LP problems are solved by using CPLEX version 12.6.1 (https://www-01.ibm.
com/software/commerce/optimization/cplex-optimizer/) with default parameters. Prob-
lems are solved by using 64-bit windows 7 computer with Intel i3-2100 3.1GHz proces-
sor. In the ESH and αECP algorithms we used the value 10−3 for the tolerances εg and
εf if not otherwise stated.

To illustrate the methods, we solve two simple problems. The first problem is

min
|x1 − 3| − 10x1
3x1 + x2 + 1

s.t. (x1 − 7)2 − 5x2 ≤ 0

x1 − 1.8x2 ≤ 0 (P1)

1 ≤ x1, x2 ≤ 8, x2 ∈ Z+.

This problem was already solved with αECP in [11]. The objective function is f ◦-
pseudoconvex and its subdifferential is

∂f(x1, x2) =


{

1
(3x1+x2+1)2

(−11x2 − 20, 11x1 − 3)
}

= {a1(x1, x2)} , x1 < 3{
1

(3x1+x2+1)2
(−9x2, 9x1 + 3)

}
= {a2(x1, x2)} , x1 > 3

{λ · a1(x1, x2) + (1− λ) · a2(x1, x2) | λ ∈ [0, 1]} , x1 = 3

.

Basically, when x1 6= 3 the subdifferential consists of the gradient and when x1 = 3 it
is the convex combination of limiting gradients as stated in Theorem 2.4. When solving
the problem with the algorithms we choose λ = 1.

For the ESH algorithm we used xNLP = (1, 8). The numbered MILP solutions and
the feasible set are illustrated in Figure 1.

Table 1: Information on iterations when solving the first example problem with ESH.

iteration 1 2 3 4 5 6 7
x1 1.000 1.000 8.000 7.200 3.600 5.400 5.400
x2 1.000 8.000 5.000 4.000 2.000 3.000 3.000
f(x1, x2) −1.600 −0.667 −2.500 −2.549 −2.565 −2.554 −2.554
µ −100 −100 −6.083 −2.543 −2.557 −2.553 −2.554
fr ∞ ∞ −0.667 −2.500 −2.549 −2.549 −2.554

At the first point, the only nonlinear constraint is violated and a supporting hyper-
plane is done at it. At points 2,3 and 4 the upper bound fr is improved and linearizations
from the objective function are added to the MILP problem. At the fifth point the con-
straint is violated again and a supporting hyperplane is done at it. The optimal solution
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Figure 1: The feasible set of the first example. The dashed lines represent level curves
of the objective function. The dots represent MILP solution points when solving the
problem by ESH or αECP

is found at the sixth point but the stopping criteria is satisfied first at the seventh iter-
ation. Information on iterations are summarized in Table 1. Note that the line search
for the objective function was not needed. Every time a feasible point was found, the
objective function attained a new upper bound on it. Note also that the algorithm visits
only at points where the nonsmooth objective function is continuously differentiable.
Hence, traditional gradients could also have been used in this example.

Surprisingly, the αECP algorithm proceeds exactly as the ESH algorithm as far as
MILP solutions are concerned. Note that the nonlinear constraint function is convex and
α = 1 does not require updating. At the first iteration, the generated cutting plane is
the same as the supporting hyperplane. Actually, the constraint function is of the form
f(x1) − x2 where f is convex. Cutting planes generated from this kind of constraint
function are also supporting hyperplanes, as will be proven later. The cutting plane will
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be a supporting hyperplane at the point (1, 7.2). The ESH algorithm creates a supporting
hyperplane near this point since the line search is done between (1, 1) and (1, 8). Since
a new upper bound is found at each iteration 2 − 4, αECP proceeds similarly to ESH.
At the 5th iteration the cutting plane and the supporting hyperplane are not the same but
similar enough to end the algorithms at the same point.

Next we will prove that in a special case a cutting plane is also a supporting hyper-
plane.

THEOREM 6.1. Let a constraint function g : Rn+1 → R be of the form g(x, y) =
f(x) − y, where f : Rn → R is convex, x ∈ Rn and y ∈ R. Then a cutting plane is a
supporting hyperplane to the level set {(x, y) ∈ Rn+1 | g(x, y) ≤ 0}.

Proof. A cutting plane at (x1, y1) is

f(x1)− y1 + (∇f(x1),−1)(x− x1, y − y1)T ≤ 0.

By rearranging the terms we obtain

(∇f(x1),−1)(x− x1, y − f(x1))T ≤ 0

being a supporting hyperplane to the level set at point (x1, f(x1)).

The second illustrative example is selected such that subgradients are needed. The
second problem is:

min max
{√

1 + |x1|,
√

1 + |x2|
}

(P2)

s.t. −5 ≤ x1 ≤ 5,−5 ≤ x2 ≤ 5.

The objective function is f ◦-pseudoconvex and it is not differentiable at lines |x1| =
|x2|. The subdifferential is

∂f(x1, x2) =



{
( x1

2|x1|
√

1+|x1|
, 0)

}
, |x1| > |x2|{

(0, x2

2|x2|
√

1+|x2|
)

}
, |x1| < |x2|{

( λx1

2|x1|
√

1+|x1|
, (1−λ)x2
2|x2|
√

1+|x2|
) | λ ∈ [0, 1]

}
, |x1| = |x2| 6= 0{

(λ1−λ2
2

, λ3−λ4
2

) |
∑4

i=1 λi = 1, λi ≥ 0
}

, x1 = x2 = 0.

If |x1| = |x2| 6= 0 we choose the subgradient with λ = 0, that is, the gradient of√
1 + |x2|. If x1 = x2 = 0 we choose the subgradient (0, 1

2
). The progression of the

ESH algorithm is illustrated in Figure 2. We start with the feasible point xNLP = (1, 0).
At the first iteration point (−5,−5) a new upper bound fr =

√
6 is found and the

linearization
√

6 + (0,− 1

2
√

6
)T ((x1, x2)− (−5,−5)) ≤ µ⇔ − 1

2
√

6
x2 +

7

12

√
6 ≤ µ
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Figure 2: The integer relaxed feasible set of the second example. The dashed lines
represent level curves of the objective function. The dots represent MILP solution points
when solving the problem by ESH

is added to the MILP subproblem. The next three iteration points (−5, 5), (−5, 0) and
(5, 0) will be at the same contour and linearizations will be added from these points. The
fifth iteration point (0, 0) is the global minimum point, but the algorithm needs to verify
it. At that point a new upper bound fr = 1 is found and all of the previous linearizations
are updated by adding 1 −

√
6 on the left hand side. Furthermore, the point xfrNLP is

updated to (0, 0). The sixth iteration point is (2, 2). Since f(2, 2) =
√

3 > 1 a line
search is done and it ends to a point close to (0, 0). A linearization is done there. The
seventh iteration point is close to the third point. The value of x1 does not affect the
optimum of MILP and CPLEX chose −5 for x1. The stopping criteria is satisfied at the
seventh iteration and algorithm stops. Some information on iterations are presented in
Table 2. Linearizations generated at each iteration are presented in Table 3.

Note that in this problem the solution process is not affected by the given feasible
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Table 2: Information on iterations when solving the first example problem with ESH.
Observe that the optimal solution is found at iteration 5 and the termination criteria is
satisfied at iteration 7.

iteration 1 2 3 4 5 6 7
x1 −5.000 −5.000 −5.000 5.000 0.000 2.000 −5.000
x2 −5.000 5.000 0.000 0.000 0.000 2.000 2.0 · 10−8

f(x1, x2) 2.449 2.449 2.449 2.449 1.000 1.732 2.449
µ −100.0 0.408 1.429 1.429 1.429 0.388 1.000
fr ∞ 2.449 2.449 2.449 2.449 1.000 1.000

Table 3: Linearizations generated by ESH in the second example problem. Lineariza-
tions are of the form β1 · x1 + β2 · x2 − µ ≤ rhsr. At the fifth iteration a new upper
bound fr = 1.0 is found, r is updated to 3 and the previously generated linearizations
are updated.

order β1 β2 rhs2 rhs3
1. 0.000 −0.204 −1.429 0.0206
2. 0.000 0.204 −1.429 0.0206
3. −0.204 0.000 −1.429 0.0206
4. 0.204 0.000 −1.429 0.0206
5. 0.000 −0.500 − −1.000
6. 0.000 −0.500 − −1.000

point xNLP. The first 4 points will be on the same contour and the line search is not
needed according to Algorithm 3.1. The fifth point is the global minimum and hence
will replace any given feasible point by equation (1). The solution process would be
affected only if fr lower than

√
6 would be given at the start. In which case, the line

search for the objective function could be done at the first iteration point.
The solution process of αECP is depicted in Figure 3. The first five points will be the

same as with ESH. At the fifth iteration the old linearizations of type (2) is removed and
the one generated at (0, 0) is added. At the sixth point (−5, 5) the constraint f−fr ≤ 0 is
violated and an α-cutting plane is added. An α-cutting plane is also added at iterations
7 and 8. At the ninth iteration the MILP problem is infeasible and coefficients α are
updated. This kind of behavior continues, i.e., an α-cutting plane is created every time
when the MILP problem is feasible and the coefficients α are updated when it is not. The
17th MILP solution is an εg-feasible solution and in subsequent iterations α-coefficients
are updated until they satisfy the criterion (7). Points after the 13th iteration are not
shown in Figure 3 since they all are close to (0, 0).

The other problems considered are the cyclic scheduling problem from [17] and its
modification solved in [11]. Table 4 summarizes some basic properties of the problems.
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Figure 3: The feasible set of the second example. The dashed lines represent level
curves of the objective function. The dots represent MILP solution points when solving
the problem by αECP

While the problems P1 and P2 are simple examples with two variables, the problem
P3 is a more complicated cyclic scheduling problem [17] with 233 variables and 137
constraints. Problem P4 is otherwise similar to P3, but the objective function is modified
to a nonsmooth form. Instead of summing the four pseudoconvex functions as in P3,
the maximum of the functions is calculated. This leads to an f ◦-pseudoconvex function.
The magnitude of the objective function in P3 and P4 is 104 so εf = 0.1 was used instead
of 10−3. In P3 and P4 the inner point was found by solving the feasibility problem (FP).
Since there are no nonlinear constraints it will, in this case, be the first feasible point of
the LP problem. The results are summarized in Table 5.

Algorithm 5.1 to solve the feasibility problem can easily be integrated within the
ESH algorithm 3.1. Then also an inner point can initially be solved with the integrated
algorithm. This is, in fact, done in the solver [34], where an inner point can be specified
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to be initially given or solved.

Table 4: Basic information on example problems. Here cont=continuous, int=integers
and bin=binary.

problem objective
constraints variables

linear convex cont int bin
P1 f ◦-pseudo - - 1 1 -
P2 f ◦-pseudo 1 1 1 1 -
P3 pseudo 137 - 60 28 145
P4 f ◦-pseudo 137 - 60 28 145

Table 5: Numerical results. The column ”f.eval.” takes into account function evalua-
tions, partial derivative evaluations and function evaluations used in the line searches.

problem method optimal value f. eval. # MILP CPU-time(s)

P1
ESH −2.55 59 7 2.76
αECP −2.55 28 7 2.20

P2
ESH 1.00 34 7 1.85
αECP 1.00 125 26 2.97

P3
ESH −165399 8026 119 47.9
αECP −165399 28914 402 63.7

P4
ESH −39071 10289 152 75.2
αECP −39071 33770 463 80.3

An optimum or the best known objective function value was obtained in each case.
In problems P2, P3, and P4 the ESH algorithm needed fewer MILP subproblems, fewer
function evaluations and spent less time than αECP solving the problem. Note that
there were no nonlinear constraints in these problems and these results suggest that the
ESH handles the pseudoconvex objective function more effectively than αECP. In the
problem P1, αECP was faster and needed fewer function evaluations than ESH. As
discussed previously, the algorithms proceeded very similarly in this problem. Hence
the ESH is less effective since a few times it needed to use a line search.

We also solved the problems by using the optimal point of the relaxed problem as
the inner point. These results are presented in Table 6. The relaxed problems were
solved by αECP. Generally, finding the minimum of the relaxed problem is more time
consuming than finding a feasible point. In P3 and P4 there are no nonlinear constraints
and solving the feasibility problem (FP) takes less than a second. For P3 finding the
relaxed minimum takes about 10 seconds, whereas for P4 it takes about 50 seconds.

For large problems it is sometimes beneficial to assign xkMILP the first feasible MILP
point instead of the optimal MILP point. This may reduce the time needed to solve
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MILP problems to the optimum. Eventually, xkMILP has to be the optimum of the MILP
subproblem to guarantee the optimality of the MINLP problem. Hence, the rule to
choose xkMILP is updated as the algorithm proceeds. Details on this procedure can be
found for example in [32]. Results on testing this strategy (”MIP sol”=1) can also be
found in Table 6. Having ”MIP sol”=1 resulted in a faster solving time when solving
P4 with ESH and P3 with αECP. Otherwise, the changes did not accelerate the solution
process.

Table 6: Numerical results on the problems P3 and P4 when trying relaxed optimum
as the inner point or ”MIP sol =1”-strategy. The column ”f.eval.” takes into account
function evaluations, partial derivative evaluations and function evaluations used in the
line searches.

problem method optimal value f. eval. # MILP CPU-time(s)

P3
ESH (rel) −165399 10463 153 81.4

ESH (MIP=1) −165399 9896 145 72.5
αECP (MIP=1) −165399 20955 289 44.9

P4
ESH (rel) −39071 12831 191 107

ESH (MIP=1) −39071 9338 138 65.4
αECP (MIP=1) −39071 39824 548 88.8

Finally, we find a feasible point to a facility layout problem from [6]. In [12] the
instance of the problem, that we consider here, was solved by ESH. Here we find a
feasible point with Algorithm 5.1 and also the relaxed optimum by αECP. The results
are given in Table 7.

Table 7: Numerical results when finding a feasible point of the facility layout prob-
lem. The value of the total constraint function F at the final point is in the column F .
Interpretation of the other columns are similar to the previous tables.

method F f. eval. # LP CPU-time(s)
FPA −5.02 160 10 1.35
αECP 0.00 1468 95 2.66

As expected, it is easier to find a feasible point than the optimal point. Next we solve
the facility layout problem with ESH algorithm using both obtained feasible points. The
results are in Table 8.

The ESH algorithm performed better when the feasible point found by FPA was
used as the inner point. This is surprising, at first, since the minimum of the relaxed
problem is presumably close to the true minimum. However, this is not the case with
this problem as the minimum value of the relaxed optimum is 0 while the true optimal
value is 20.73.
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Table 8: Numerical results when solving the facility layout problem. The problem was
solved with ESH method and linearizations were done from all possible constraints.
The used method to find the feasible point is listed in column ipm. Interpretation of the
other columns are similar to the previous tables.

ipm optimal value f. eval. # MILP CPU-time(s)
FPA 20.73 3490 48 94
αECP 20.73 5063 80 204

7 Conclusions
In this paper, the ESH algorithm ([12, 19, 30]) was generalized to handle MINLP prob-
lems with an f ◦-pseudoconvex objective function. In addition, if the constraint func-
tions of the problem are f ◦-pseudoconvex the algorithm was shown to converge to an
εg-global minimum value. The solution procedure was illustrated by solving some nu-
merical examples.

The key technique of this generalization is to use linearizations of type (2). Similar
types of linearizations were also used to generalize αECP in order to handle pseudo-
convex and f ◦-pseudoconvex objective functions in [11, 32]. However, in αECP an
additional pseudoconvex objective function constraint was also used. In the current pa-
per, it was further shown that a feasibility problem can be solved with similar kinds of
linearizations as in the given ESH algorithm. Such an algorithm can be used to find
the necessary integer relaxed feasible point needed in the ESH algorithm and, as earlier
mentioned, can also be used in an initial step of an integrated algorithm.
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A A theorem reformulated for l-quasiconvex constraint
functions.

The following theorem generalizes Theorem 4 in [12] for l-quasiconvex constraint func-
tions. We assume that the Slater constraint qualification holds true. We consider the
case εg = 0 implying that the supporting hyperplanes are generated at level curve
{x | F (x) = 0}.

THEOREM A.1. Let the constraint function g be l-quasiconvex and 000 /∈ ∂g(xig). Then,
the supporting hyperplane ξTi (x− xig) ≤ 0 does not cut off any feasible point.

Proof. On the contrary, suppose y is feasible and it is cut off. By Theorem 2.3 (iii)
g◦(xig;y − xig) > 0. Then, by Definition 2.7 we have g(y) ≥ g(xig). By the feasibility
of y we have g(y) ≤ 0 implying g(y) = g(xig) = 0.

Since the Slater constraint qualification holds true, there exists z such that g(z) <
0 = g(y). By continuity of g there exists ε > 0 such that g(z) < 0 for all z ∈ B(z; ε).
Let A 6= ∅ be an open set such that

A ⊂ conv {B(z; ε), {y}} ∩
{
x | ξTi (x− xig) > 0

}
.

Let a ∈ A be arbitrary. Since a is cut off by the hyperplane we have g◦(xig;a −
xig) > 0 and l-quasiconvexity implies g(a) ≥ 0. Since a ∈ conv {B(z; ε), {y}}, the
quasiconvexity of g implies g(a) ≤ 0. Thus, g(a) = 0 for all a ∈ A. Consider the set
B = conv

{
A,
{
xig
}}
\
{
xig
}

. By similar deductions used for the set A we have that
g(b) = 0 for all b ∈ B. Furthermore, the set B is open. Hence, ∇g(b) = 000 for all
b ∈ B. There exists a sequence (bi) ⊂ B such that limi→∞ bi = xig. Then, by Theorem
2.4 we have 000 ∈ ∂g(xig), which contradicts the assumption.

B Feasibility problem: cutting planes from the convex
constraints

Here we prove that if the Slater constraint qualifications holds the feasiblity algorithm
finds a feasible point even if cutting planes are created from convex constraint functions.
Recall that the problem is

min µ

s.t. gm(x) ≤ µ, ∀m = 1, . . . ,M (FP)

x ∈ L, µ ∈ [µL, µU ] ,

We assume that the problem has both convex and f ◦-pseudoconvex constraint functions.
Denote index sets

MP = {m ∈ N | gm is not convex but f ◦ − pseudoconvex}
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and

KC =
{
k ∈ N | k < K, the most violating constraint at xk is convex

}
KP = {k ∈ N | k < K, k /∈ KC} .

Thus, if k ∈ KC a cutting plane will be added to the LP problem. The problem LPK is

min µ

s.t. gmk
(xk) + ξTmk

(x− xk) ≤ µ, k ∈ KC (LPK)

ξTmk
(x− xk) ≤ µ, k ∈ KP

x ∈ L,

where gmk
is the most violating constraint function at iteration k and ξmk

∈ ∂gmk
(xk).

Clearly, the sequence (µk) is increasing as we minimize µ and added linearizations will
not add new feasible points to the problem. Denote

µKx = max

{
max
k∈KC

{
gmk

(xk) + ξTmk
(x− xk)

}
, max
k∈KP

{
ξTmk

(x− xk)
}}

,

where x ∈ L. Then, the problem (LPK) can be written

min µKx
s.t. x ∈ L.

The convergence proof is quite similar to that in Section 5. The following Lemma
corresponds to Lemma 5.1.

LEMMA B.1. Suppose problem (FP) has a feasible solution and it satisfies the Slater
constraint qualification. Then there exists µ0 < 0 such that µk ≤ µ0 for all k ∈ N.

Proof. Since the Slater constraint qualification holds true there exists x ∈ L such that
F (x) < 0. By convexity we have

gmk
(xk) + ξTmk

(x− xk) ≤ gmk
(x)

for any k ∈ KC . Denote Am = L ∩ {y | gm(y) ≥ 0}. Then, we can write

µKx ≤ max

{
max
k∈KC

{gmk
(x)} , max

k∈KP

{
ξTmk

(x− xk)
}}

≤ max

F (x), max
k∈KP

sup
z∈Amk

ξ∈∂gmk
(z)

{
ξT (x− z)

} .

By choosing a = 0, A = Amk
and C = {x} in Lemma 2.8 we get for every mk ∈ MP

a positive δmk
> 0 such that

sup
z∈Amk

ξ∈∂gmk
(z)

{
ξT (x− z)

}
< −δmk

.
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Thus,

µK ≤ µKx ≤ max

{
F (x), max

m∈MP

{−δm}
}
< 0

and we may choose µ0 = max {F (x),maxm∈MP
{−δm}}.

The convergence proof is given below.

THEOREM B.2. If problem (FP) satisfies Slater constraint qualification, a feasible point
is found after a finite number of iterations.

Proof. Suppose the algorithm does not converge after a finite number of iterations. By
Lemma B.1 there exists µ0 < 0 such that

µk ≤ µ0 < 0 for all k ∈ N. (8)

Furthermore, the sequence (xk) has a converging subsequence (xkl) by the Bolzano-
Weierstrass Theorem. Let xki ,xkj ∈ (xkl) be such that j > i and xkj ∈ B(xki ; −µ0

2KF
),

where KF is a Lipschitz constant of F . Let ξmi
∈ ∂gmi

(xki), where gmi
is active at xki .

Then, independently on whether i ∈ KC or i ∈ KP ,

µj ≥ ξTmi
(xkj − xki) ≥ −

∥∥ξmi

∥∥∥∥xkj − xki∥∥ ≥ −KF
−µ0

2KF

=
µ0

2
> µ0.

This contradicts with inequality (8) proving the theorem.
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