
Jonatan Wiik | Pontus Boström

Contract-Based Verification of MATLAB and
Simulink Matrix-Manipulating Code

TUCS Technical Report
No 1107, July 2014

Contract-Based Verification of MATLAB and
Simulink Matrix-Manipulating Code

Jonatan Wiik
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5, 20520 Turku, Finland
jonatan.wiik@abo.fi

Pontus Boström
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5, 20520 Turku, Finland
pontus.bostrom@abo.fi

TUCS Technical Report

No 1107, July 2014

Abstract

MATLAB/Simulink is a popular toolset for developing embedded software.
The main target of the MATLAB/Simulink toolset is numerical computing
applications and the tools offer a rich language for manipulating matrices.
This paper presents an approach to automatic, modular, contract-based ver-
ification of programs written in a subset of the MATLAB programming lan-
guage, with focus on efficiently handling the provided matrix manipulation
functions. We restrict ourselves to the subset of MATLAB suitable for code
generation, which means matrix types and shapes can be determined stati-
cally. We present an approach to type and shape inference for matrices that
is more strict than MATLAB, but aids verification. The type and shape in-
formation is then used in the verification. From the programs and contracts
we generate verification conditions that are discharged with an of-the-shelf
SMT solver. We present two approaches for verification: direct axiomatisa-
tion of built-in matrix functions and expansion of the functions. We evaluate
our approaches on a number of examples and discuss challenges for automatic
verification in this setting. We found that expansion of matrix functions can
be very effective when the matrix sizes are relatively small, which is common
in many embedded applications.

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction

The MATLAB [19] environment and its toolbox Simulink, have become
widely used tools for development of control systems. Simulink has even
become de facto standard for model-based design in many domains. The
MATLAB environment includes toolboxes for generating embedded C or
C++ code for different platforms directly from Simulink models or from
code written in a subset of the MATLAB language, which we refer to as
Embedded MATLAB throughout this paper.

The MATLAB and Simulink programming languages are aimed at numer-
ical computing, with matrix computations as a core feature. The languages
inherently support such computations through convenient built-in functions
and operators that directly operate on matrices and vectors. MATLAB is an
implicitly and dynamically typed imperative language. We build on existing
work on MATLAB type inference [1, 14] to obtain a type system that is
suitable for static inference of types and matrix shapes. The type and shape
inference closely resembles what is already done in MATLAB and Simulink
when C/C++ code is generated, but it is more strict in order to aid verifi-
cation.

We present a modular approach to automatic contract-based static ver-
ification of MATLAB style programs. The target of our approach is Em-
bedded MATLAB and Simulink, but the same concept should also be ap-
plicable for reasoning about matrix code in other similar languages. We use
standard assume-guarantee reasoning as found in many other verifiers, e.g.
[2, 3, 7], extended with efficient handling of matrix computations. Func-
tions are checked in isolation by assuming preconditions and asserting the
postconditions. At function calls, the precondition is asserted, while the
postcondition is assumed. Verification conditions are generated from the
programs and contracts, which are then discharged by an automatic SMT
solver. The challenges here relate to efficient handling of MATLAB’s built-
in matrix functions, as well as inference of information needed for efficient
verification that is not given explicitly.

The work described in this paper also acts as an extension to an approach
for contract-based verification of Simulink models [4, 6], by adding support
for matrix computations. In that approach, Simulink models are automat-
ically verified with respect to contracts by first generating sequential code.
The target programming language used there essentially constitutes a subset
of the Embedded MATLAB language.

We present and evaluate two approaches to encoding verification con-
ditions for matrix-manipulating programs in an SMT solver. In the first
approach evaluated, we view the matrix functions as a library and give them

The work described in this paper has been done in the EFFIMA program coordinated
by Fimecc and the EDiHy project funded by the Academy of Finland.

1

pre- and postconditions, as in traditional program verification. In the second
approach we use the inferred information about matrix shapes in the verifi-
cation process. This information is used to automatically expand the matrix
functions. As we will show, expansion can make proofs more efficient and
can be very effective when the size of matrices are relatively small, which is
common in many embedded applications.

The main contributions of this paper are:

• Definition of an expressive language similar to Embedded MATLAB
that can be effectively encoded into verifiers.

• A type inference and two automated verification approaches for the
language.

• Evaluation of the approaches on examples, as well as discussion on
advantages and drawbacks of the approaches.

We have implemented the presented verification approaches in the prototype
verification tool VerSÅA [5]. The tool can automatically verify Embedded
MATLAB code or Simulink models involving matrix computations with re-
spect to contracts. The contracts are written as extra annotations to function
declarations in Embedded MATLAB code or in a Description field of sub-
system blocks in Simulink models.

The paper begins with a description of the MATLAB programming lan-
guage and the contract format in section 2. In section 3 we define the gram-
mar of the language. Section 4 describes the type system and the type
inference framework. In section 5 we describe the verification approach and
evaluate it on some examples in section 6. Section 7 discusses related work
and section 8 concludes.

2 MATLAB and contract-based verification

The programming language targeted in this paper is Embedded MATLAB,
which essentially is a subset of the complete MATLAB language suitable for
code generation. It is an implicitly typed imperative programming language.
As opposed to the complete MATLAB language, Embedded MATLAB is
statically typed, since types and matrix shapes are decided at compile-time.
All data in the language is ultimately a matrix1. A MATLAB matrix type
consists of an intrinsic type, such as double, int32, boolean etc., and a
shape. We use 〈m,n〉 to denote a matrix shape with m rows and n columns.
We use the term column vector for matrices of shape 〈m, 1〉 and row vector
for matrices of shape 〈1, n〉. We use the term vector to mean either a column

1MATLAB supports other types too, but we do not consider them here.

2

vector or a row vector. In MATLAB also scalars are considered matrices,
we thus use the term scalar to mean a matrix of shape 〈1, 1〉. In this work
we restrict ourselves to two-dimensional matrix shapes, although the MAT-
LAB language in general supports an arbitrary number of dimensions. There
should, however, not be any fundamental problem in extending the approach
to support more dimensions. We also require that matrices are non-empty,
i.e. that the size along both dimensions is ≥ 1.

The MATLAB language has built-in functions and operators (infix func-
tions) that directly manipulate matrices. We treat functions and operators
uniformly in this paper and use the term function to refer to both of them.
As an example, consider the matrices a and b of shape 〈2, 2〉:

a =

[
a11 a12
a21 a22

]
b =

[
b11 b12
b21 b22

]
The following MATLAB code2:

c := max(a,b);
d := 2+a;

assigns matrices with the following values to c and d:

c :=

[
max(a11, b11) max(a12, b12)
max(a21, b21) max(a22, b22)

]
d :=

[
2 + a11 2 + a12
2 + a21 2 + a22

]
Both the function max and the addition operator thus element-wise func-
tions on matrices. An element-wise MATLAB function or operator f(a, b) is
defined if a and b have the same intrinsic type and m1 = n1 and m2 = n2 or
either a or b is scalar, i.e. m1 = m2 = 1 or n1 = n2 = 1. The resulting matrix
will then have the same shape as a and b, or the larger one of them if either
a or b is scalar. Many of the built-in MATLAB functions are element-wise,
but there are some exceptions. Examples of built-in functions that are not
element-wise are matrix multiplication and functions that collapse matrices.
Consider, for instance, the collapsing function sum used in the following
program code:

x := sum(a);
y := sum(x);

which assigns the following matrices to x and y:

x :=
[
a11 + a21 a12 + a22

]
y := (a11 + a21) + (a12 + a22)

Collapsing functions collapse (row and column) vectors to scalars and other
matrices to row vectors. In the example above, for instance, the variable x
is assigned a row vector containing the sum over each column of the matrix

2For clarity we use := for assignment in this paper, although = is used in MATLAB.

3

1 function m = max_f(a)
2 %@ typeparameters: t<:numtype, n
3 %@ types: m:t, a:matrix(t,n,1)
4 %@ ensures: all(a <= m)
5 %@ ensures: any(a == m)
6 m := a(1);
7 i := int32(2);
8 while (i <= length(a))
9 %@ invariant: 1 <= i && i <= n+1

10 %@ invariant: \forall j:int32 . (1 <= j && j < i ==> m >= a(j))
11 %@ invariant: \exists j:int32 . (1 <= j && j < i && m == a(j))
12 if (m < a(i))
13 m := a(i);
14 end
15 i := i+1;
16 end
17 end

Figure 1: A MATLAB function for finding the index of the minimum element
in a column vector, annotated with contracts.

d. The behaviour of sum thus depends on the input shape. This is also the
case with, for instance, the multiplication operator ∗. This operator denotes
normal matrix multiplication if both arguments are matrices, but element-
wise multiplication if one of the arguments is scalar. MATLAB functions are
typically polymorphic, which is also the case for the built-in functions max
and sum used above. The function max, for instance, accepts two matrices
of any intrinsic type t and any shape 〈m,n〉 and returns a matrix of the same
intrinsic type and shape.

A MATLAB program consists of a set of functions, of which one acts
as the entry-point for the program. The aim of this paper is to enable
automatic contract-based verification of such programs. We use a standard
modular verification technique, checking every function with respect to its
contract in isolation, using assume-guarantee reasoning. For each function
body analysed, we check that the postconditions hold if the preconditions
are satisfied. The contracts are written inside special comments, analogously
to how it is done in e.g. JML [7] for the Java language. A small example
function for computing the maximum element of a vector, is given in Fig.
1. This functionality is also implemented by the built-in MATLAB function
max with one argument, however, the goal here is to demonstrate language
features. The specification of the function, i.e. its contract, is written in
comments, starting with “%@”. In addition to normal preconditions and
postconditions, the function is also annotated with types for the inputs and
the output.

We first consider the type annotations. Types for all inputs and the

4

output is given in the types field. The syntax matrix(t, n,m) is used to
denote a matrix with intrinsic type t and shape 〈n,m〉. The short-hand
form t is used to denote a scalar of intrinsic type t, i.e. matrix(t, 1, 1). The
typeparameters field declares universally quantified type parameters over
which the types declared in the types field can be parametrised. A type
parameter can parametrise over either intrinsic type or shape. For instance,
the max_f function in Fig. 1 is parametrised to take as input a matrix
of an intrinsic type t and a shape 〈n, 1〉 and outputs a scalar of the same
intrinsic type t. Note that the type parameter t is bound to numeric types
in this example. These type annotations are actually not needed here for
type inference, as all types could be inferred if the types of the inputs of
the entry-point function are known. However, the type annotations are here
important from a specification point-of-view. Without the type annotations
there would, for instance, be several incorrect implementations satisfying the
postconditions of the max_f function, e.g. the implementation m := a. The
type annotations thus provide a form of pre- and postconditions constraining
the inputs and outputs on the level of types (and shapes).

We use the standard annotations requires and ensures for function pre-
conditions and postconditions, as well as invariant annotations for loops.
For the max_f function we have the postcondition all(a ≤ m), stating that
the output m should be greater than or equal to each element in a. We
also have the postcondition any(a = m), stating that there exists an element
in a that is equal to m. Note that the all and any functions are built-in
MATLAB functions. They correspond to universal and existential quanti-
fiers over matrix indices and provide a compact and intuitive way to write
contracts for matrix code. The invariants used for the while-loop in max_f
are used to prove that the loop establishes the postcondition of the function.
Note that the all and any functions are not used in the invariants on lines
11-12. In MATLAB these conditions could be written using all and any,
e.g. all(a(1:i) ≤ m). However, we want to infer matrix shapes statically.
This is not possible for this expression, as i is not constant, which conse-
quently means that the shape of a(1:i) is not constant and hence cannot be
determined statically.

3 Language definition

In this section we define more precisely the programming language considered
throughout this paper, i.e. the subset of MATLAB we intend to support. In
addition to the MATLAB constructs supported, the language is also extended
with some specification-oriented constructs not part of pure MATLAB. These
constructs are written inside special comments to maintain compatibility
with MATLAB.

5

In MATLAB, matrices are immutable objects presumably implemented
via copy-on-write. Every function or matrix update can thus be considered
to return an new matrix. A MATLAB program consists of a set of func-
tion declarations, of which one acts as the entry-point of the program. The
grammar of our function declarations is the following:

FuncDecl ::= function Id = f(Id∗)
TypeParams? Types Spec∗ Stmt?

end
TypeParams ::= typeparameters (Id (vt t)

?)∗

Types ::= types (Id : t)∗

Spec ::= requires Exp | ensures Exp

(1)

In this grammar, x∗ and x? denote zero or more and zero or one occurrences
of an element x, respectively. The function declarations of MATLAB are
thus extended with type annotations for the input and output parameters,
as well as pre- and postcondition annotations.

The expressions supported essentially constitute a subset of the MAT-
LAB expression language. Additionally, it also includes some logical con-
structs, such as universal and existential quantifiers and conditional expres-
sions, which are not part of the MATLAB language, but often are convenient
when writing specifications. The same expression language is used both in
statements in function implementations and in contract expressions. The
complete expression language grammar is the following:

Exp ::=
Exp1 (+ | − | ∗ | / | .∗ | ./) Exp2 | Arithmetic expression
Exp1 (∧ | ∨ | =⇒ | ⇐⇒) Exp2 | Logical expression
Exp1 (= | 6= | < | > | ≥ | ≤) Exp2 | Relational expression
(∀ | ∃) (x : t)∗ · Exp | Quantified expression
¬Exp | −Exp | Unary operators
Exp1 ? Exp2 : Exp3 | Conditional expression
Exp1 (Exp2 | :) (Exp3 | :)? | Matrix accessor
Id Exp1 , . . . ,Expn | Function call
Id | Identifier
Num | Numeric literal
[Exp11 , . . . ,Exp1n ; . . . ;Expm1 , . . . ,Expmn] | Matrix literal
CExp1 :CExp2 | CExp1 :CExp2 :CExp3 | Range
true | false Boolean literal

(2)

It is worth noting that we do not separate expressions from predicates in
this grammar, as this is done later in the type checking. This is consistent
with how MATLAB treats predicates. It is further worth noting that matrix
accessors and function calls partially share the same syntax. Again, this is
consistent with MATLAB, and we handle this by requiring that variables do
not have the same name as any known built-in function or function declared
by the user. In MATLAB the behaviour is more complicated. Rose and

6

Padua developed an algorithm [14] for simulating this behaviour, which we
have chosen not to repeat here.

In MATLAB there are also expressions with data-dependent shape, e.g.
the Range expression in (2). The shape of a range expression a:b, where a and
b are integers, is 〈1, b−a+ 1〉. For these cases we define a separate language,
CExp, for constant expressions. This language is a subset of the expressions
given in (2), which can be evaluated by the type checker and hence used
in expressions with data-dependent shape. Thus, the type checker does not
need to support the complete expression language in order to support static
shape inference of such expressions. Since the expressions in CExp are only
used for shape information, only numeric scalars are included in the lan-
guage. Support for a limited set of functions is also included. The supported
functions are typecast functions for supported integer types and the length
function. The grammar of CExp is hence defined as:

CExp ::= Id | Num | int32 (CExp) | int16 (CExp) | int8 (CExp) |
uint32 (CExp) | uint16 (CExp) | uint8 (CExp) | length(Exp)

(3)

The typecast functions are needed to enable declaration of constants of differ-
ent types in a way consistent with MATLAB. The length function returns the
size of the largest dimension of its input. This function is convenient to sup-
port in the type checker since it enables the declaration of new matrices using
size information from another matrix, for instance using zeros(length(x), 1)
to create a column vector of zeros with the same length as x. Note that
the argument to length can be any expression in Exp, not only CExp. The
reason is that only the shape of x is used and not the value of the expression.
It would in principle be straight-forward to extend CExp to also support
other language constructs and functions in the future, including matrices.
For instance the size function, returning a vector containing the size of its
input along each dimension, would be useful to support for the same reason
as the length function.

In the MATLAB language, it is possible to assign variables (complete ma-
trices) or elements in matrices. To reflect this, we define a separate language
for the left-hand side of assignments, i.e. assignable expressions, Asgn:

Asgn ::= Id (Exp1 | :) (Exp2 | :)? | Id (4)

The special colon operator here denotes assignment to an entire row or col-
umn. Note that Asgn is more strict than in MATLAB, which allows as-
signment to any sub matrix, whereas we only allow assignment to a single
element or an entire row or column.

The complete grammar of the statement language, in which function im-

7

plementations are written, is the following:

Stmt ::= Asgn := Exp | Assigment
constant Id := CExp | Constant declaration
if Exp Stmt1 else Stmt2 end | If-statement
Stmt1 ;Stmt2 | Sequential composition
while Exp Inv∗ Stmt end | While loop
assert Exp | Assume
assume Exp | Assert
Id :| Exp | Non-deterministic update
choice Stmt1 or Stmt2 end Non-deterministic choice

(5)

While this language closely resembles the MATLAB language, there are some
differences. The largest difference is the addition of the specification-oriented
statements, listed in the last four lines of the grammar. These constructs
are, however, primarily used internally by the verifier. The language also
allows declaration of constants, which are not needed in pure MATLAB.
Constants are assigned using the constant expression language CExp defined
in (3), and they can thus be evaluated by the type checker and used as shape
information in the type inference. To maintain MATLAB compatibility, the
constant keyword of constant declarations can be written in a comment on
the line above the assignment. MATLAB does not have explicit constants,
but Embedded MATLAB infers that variables are constants when needed.
For clarity we have, however, opted to use explicit declaration of constants
here.

We recognise that the subset of supported MATLAB constructs is cur-
rently fairly small. However, it is straight-forward to extend the language
and the verification approach to cover many more MATLAB constructs, such
as for-loops, which would be typically used in MATLAB code targeted for
code generation.

4 Type system
We want to statically determine types and shapes of data in functions writ-
ten in the language described in the previous section. The type and shape
information can then be used in the verification and thus the verifier does
not need to quantify over types and shapes. This significantly simplifies the
verification tasks, since we only need to verify functions for the instantiations
of type parameters actually used instead of all valid instantiations. However,
the MATLAB language is implicitly typed, and we want to avoid extra type
annotations. Thus, we determine the type and shape of local variables and
expressions through inference.

The approach to type and shape inference that we use is inspired by
previous work of Almási, Padua and de Rose in the context of the MaJIC [1]

8

and FALCON [14] compilers for MATLAB code. We have, however, made
several modifications to their type system, to enable efficient encoding of
the programs in a verifier. The type inference we use is also stricter than
MATLAB’s type inference. For instance, we do not allow implicit typecasts
as is commonly done in MATLAB. In MATLAB it is legal to add an integer
with a double, since the double will automatically be cast to an integer. Since
we do not allow typecasts like these, we also require that matrix indices
are integers. Another difference compared to MATLAB is that we use a
stricter separation between booleans and numeric types, in order to obtain
efficient verification conditions. MATLAB does, for instance, accept numeric
types as operands to logical operators and also allows booleans to be used in
arithmetic expressions, which we do not allow.

In our language all data is of matrix type. Since we only consider matrices
with up to two dimensions, a matrix type consists of an intrinsic type t and
a shape 〈n,m〉, where n and m denotes the number of rows and columns,
respectively. The intrinsic type is an element in a finite lattice Lt, formed
by the elements I = {boolean, int8, int16, int32, uint8, uint16, uint32,
double, numtype, toptype}, and the comparison operator:

Lt = {I,vt} and
boolean vt toptype,
int8 vt int16 vt int32 vt numtype,
uint8 vt uint16 vt uint32 vt numtype,
double vt numtype,
numtype vt toptype

(6)

As in MATLAB, we have several different sizes of integers. We here use a
different type hierarchy than that presented in [1, 14]. There integers are
considered as subtypes of reals (doubles). This would not be feasible for
verification, as verifiers typically uses different theories for integers and reals.
Additionally, compared to [1, 14], we do not at the moment consider complex
numbers. The type toptype is a supertype of all other intrinsic types. The
type numtype is a super type of all numeric intrinsic types. The types
numtype and toptype are in a sense abstract types. They are used as a
bound for type parameters in function declarations, but they cannot be used
as instantiations of type parameters.

A matrix shape consists of two dimensions n1, n2 ∈ D, where D is the
set of dimensions: D = Z+ ∪ {∞}. Matrix shapes can then be defined as a
lattice Ls, which consists of pairs of dimensions, one for the number of rows
and one for the number of columns:

Ls = {D × D,vs} and
s1 vs s2 =̂ (s1 = s2 ∨ s2 = 〈∗,∞〉 ∨ s2 = 〈∞, ∗〉) (7)

where ∗ denotes any dimension d ∈ D. Here∞ denotes an invalid dimension,

9

which indicates an inference error. Programs can only be verified if every
node in the abstract syntax tree has been assigned a valid (finite) shape.

In [1, 14] an unknown shape only means fallback to dynamic memory al-
location. Also MATLAB has an option to generate code which uses variable-
size memory. Here we require that exact types and shapes are determined
statically. Because of this, we do not allow the type of a variable to change
once it has been assigned for the first time. This also means that the shape
of a variable cannot change once it has been assigned for the first time.
However, this is something that anyway should be avoided in safety-critical
embedded applications.

The type system for our language is given by the Cartesian product
of the intrinsic type lattice and the shape lattice: T = Lt × Ls. We use
matrix(t, 〈n,m〉) to denote a type (t, 〈n,m〉) ∈ T in the language. We can
then define the language of types as follows:

t ::= x | boolean | int8 | . . .
d ::= x | n
s ::= 〈d1, d2〉
δ ::= s | maxs(s1, s2) | muls(s1, s2) | cols(s)
τ ::= matrix(t, δ) | d
α ::= τ | α1 × α2 | α→ τ
θ ::= α | ∀ x vt t · θ | Π x · θ | unit

(8)

Here x denotes a type parameter identifier and x denotes a list of such iden-
tifiers. We use n to denote a positive integer. Hence t and d denotes the
grammar of intrinsic types and dimensions, respectively. Then τ defines the
grammar of complete matrix types. We use α to define the grammar of types
for functions. Finally, we use θ to define the grammar of quantified types. We
have universally quantified polymorphic functions, which can be quantified
over both intrinsic type and shape. We use ∀ to denote quantification over
intrinsic type and Π to denote quantification over shape. As an example,
consider the type signature for the element-wise operator addition:

∀ t vt numtype · Π m1,m2, n1, n2 ·matrix(t, 〈m1,m2〉)×matrix(t, 〈n1, n2〉)
→ matrix(t,maxs(〈m1,m2〉, 〈n1, n2〉))

The quantification over intrinsic type is bounded, denoted by t vt u, mean-
ing that t must be a subtype of u. Similar bounds for quantification over
shape is currently not supported, and it is thus not possible to, for instance,
declare functions that accepts inputs up to some specific size. This is a fea-
ture that could be added, however, we have not come across any built-in
MATLAB function of interest for embedded applications, where such a dec-
laration would be useful. The kind of polymorphism supported is similar to
Let-polymorphism found in ML and related languages, i.e. type parameters

10

cannot be instantiated with polymorphic types. A consequence is that all
valid types can be written in a form in which quantifiers only appear in the
outermost position of types [21].

The shape function maxs used in the type signature above is defined as:

maxs(〈m1,m2〉, 〈n1, n2〉) =

〈m1,m2〉 if m1 = n1 and m2 = n2

〈m1,m2〉 if n1 = n2 = 1
〈n1, n2〉 if m1 = m2 = 1
〈∞,∞〉 otherwise

(9)

The output shape for all binary element-wise functions are defined in the
same way. All MATLAB functions are, however, not element-wise. The type
signature for matrix multiplication, for instance, is the following:

∀ t vt numtype · Π m1,m2, n1, n2 ·matrix(t, 〈m1,m2〉)×matrix(t, 〈n1, n2〉)
→ matrix(t,muls(〈m1,m2〉, 〈n1, n2〉))

where the shape function muls is defined in the following way:

muls(〈m1,m2〉, 〈n1, n2〉) =

〈m1, n2〉 if m2 = n1

〈m1,m2〉 if n1 = n2 = 1
〈n1, n2〉 if m1 = m2 = 1
〈∞,∞〉 otherwise

(10)

Additionally, there is also a separate case for collapsing MATLAB functions.
Consider, for instance, the type signature of the sum function:

∀ t vt numtype · Π n1, n2 ·matrix(t, 〈n1, n2〉)→ matrix(t, cols(〈n1, n2〉))

where cols is given by:

cols(〈n1, n2〉) =

{
〈1, n2〉 if n1 > 1 and n2 > 1
〈1, 1〉 if n1 = 1 or n2 = 1

(11)

In MATLAB there are also built-in functions with data-dependent out-
put shape. Examples of such functions are zeros(a, b) and ones(a, b), which
returns a matrix of shape 〈a, b〉 in which each element is 0 and 1, respectively.
These functions are typically used to initialise matrices in Embedded MAT-
LAB and supporting them is thus essential. However, it is obvious that, in
the general case, the output shape of these functions cannot be determined at
compile-time. We have opted to solve this issue by introducing constants in
our language and restricting these functions to only accept constant expres-
sions as input. Constant expressions can be evaluated during type inference
and coerced to shape information, which can be used in the inference. As an
example, consider the type signature for the functions zeros and ones:

#a×#b→ matrix(double, 〈#a,#b〉)

11

f : ∀ x vt y ·Π s · τi → τo dom(σt) = {x} dom(σs) = {s}
V, C ` E : τi[σt, σs] forall (E, τi) ∈ (E, τi)

V, C ` f(E) : τo[σt, σs]
(fun-call)

V, C ` E : boolean Æ ∈ {∀, ∃}
V, C ` Æ x : τ · E : boolean

(quant-exp)

V, C ` E1 : t, . . . , Em : t

V, C ` [E1, . . . , Em] : matrix(t, 1,m)
(mat-cons-row)

V, C ` E1 : matrix(t, 1,m), . . . , En : matrix(t, 1,m)

V, C ` [E1; . . . ;En] : matrix(t, n,m)
(mat-cons-col)

V, C ` C : t t vt int32 C > 0

V, C ` #C ∈ D
(shp-1)

V, C ` C : t t vt uint32 C > 0

V, C ` #C ∈ D
(shp-2)

Figure 2: Typing rules for expressions.

where #a denotes coercion of the constant value a to shape information. The
coercion is only defined for constant integer expressions, defined in (3). The
arguments a and b are thus also integer scalars.

It is worth noting that there is also the opposite coercion, i.e. that shape
data is coerced to an expression. Consider for instance the function length(a),
which returns the length of the largest dimension of the matrix a. This case
is, however, trivial, since all shapes have been decided at compile-time and
shapes of variables are not allowed to change. Thus it is possible to just
replace the shape variable with its actual value through constant propagation.
The type of shape information is considered to be the largest integer type,
i.e. int32, at expression level.

The type signatures for all different cases of supported operators and
functions are listed in Tables 1 and 2. Note that the operators .∗ and ./ denote
element-wise multiplication and division. It is also worth noting, that for
MATLAB compatibility, numeric constants can also be type parametrised.
E.g. 0 can be a scalar of any type, including boolean.

Inference rules for typing expressions are listed in Fig. 2 and for state-
ments and function declarations in Fig. 3. Here V maps variables to types
and C maps constants to types. The rules describe typing of both intrinsic
type and shape. As we treat operators and function calls uniformly, there is
only one typing rule, (fun-call), for all function calls. In the type rules, even
matrix accesses are treated as function calls. The (fun-call) rule does, how-
ever, deserve some explanation: Function applications are typed based on the
type signature of the function declaration. Let σt be a mapping from type

12

Table 1: Type signatures for binary operators and functions as well as con-
ditional expressions
Function Type signature
a+ b
a− b
a .∗ b
a ./ b
max(a, b)
min(a, b)
pow(a, b)
mod(a, b)

∀ t vt numtype ·Π m1,m2, n1, n2 ·
matrix(t, 〈m1,m2〉)×matrix(t, 〈n1, n2〉)
→ matrix(t,maxs(〈m1,m2〉, 〈n1, n2〉))

a ∧ b
a ∨ b
a =⇒ b
a⇐⇒ b

Π m1,m2, n1, n2·
matrix(boolean, 〈m1,m2〉)×matrix(boolean, 〈n1, n2〉)
→ matrix(boolean,maxs(〈m1,m2〉, 〈n1, n2〉))

a = b
a 6= b
a > b
a ≥ b
a < b
a ≤ b

∀ t ·Π m1,m2, n1, n2 ·
matrix(t, 〈m1,m2〉)×matrix(t, 〈n1, n2〉)
→ matrix(boolean,maxs(〈m1,m2〉, 〈n1, n2〉))

a ∗ b
∀ t vt numtype ·Π m1,m2, n1, n2 ·

matrix(t, 〈m1,m2〉)×matrix(t, 〈n1, n2〉)
→ matrix(t,muls(〈m1,m2〉, 〈n1, n2〉))

a ? b : c
∀ t ·Π m1,m2, n1, n2, o1, o2 ·

matrix(boolean, 〈m1, n1〉)×matrix(t, 〈n1, n2〉)×
matrix(t, 〈o1, o2〉)→ matrix(t,maxs(〈n1, n2〉, 〈m1,m2〉, 〈o1, o2〉))

13

Table 2: Type signatures for unary functions, matrix accesses, data-
dependent functions and number literals
Function Type signature
−a
abs(a)
square(a)
sqrt(a)
sin(a)
cos(a)
tan(a)
sgn(a)

∀ t vt numtype ·Π n1, n2 ·
matrix(t, 〈n1, n2〉)→ matrix(t, 〈n1, n2〉)

intX(a) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)→ matrix(intX, 〈n1, n2〉)
uintX(a) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)→ matrix(uintX, 〈n1, n2〉)
double(a) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)→ matrix(double, 〈n1, n2〉)
boolean(a) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)→ matrix(boolean, 〈n1, n2〉)
¬a Π n1, n2 ·matrix(boolean, 〈n1, n2〉)→ matrix(boolean, 〈n1, n2〉)
sum(a)
prod(a)
min(a)
max(a)

∀ t vt numtype ·Π n1, n2 ·
matrix(t, 〈n1, n2〉)→ matrix(t, cols(〈n1, n2〉))

all(a)
any(a)

Π n1, n2 ·
matrix(boolean, 〈n1, n2〉)→ matrix(boolean, cols(〈n1, n2〉))

transpose(a) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)→ matrix(t, 〈n2, n1〉)
length(a) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)→ int32

size(a) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)→ matrix(int32, 〈1, 2〉)
a(i, j) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)× int32× int32→ t

a(:, j) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)× int32→ matrix(t, 〈n1, 1〉)
a(i, :) ∀ t ·Π n1, n2 ·matrix(t, 〈n1, n2〉)× int32→ matrix(t, 〈1, n2〉)
a:b #a×#b→ matrix(int32, 〈1,#b−#a+ 1〉)
a:b:c #a×#b×#c→ matrix(int32, 〈1, b(#c−#a)/#bc+ 1〉)
zeros(a, b)
ones(a, b)

#a×#b→ matrix(double, 〈#a,#b〉)

0
1

∀ t ·matrix(t, 〈1, 1〉)

n ∀ t vt numtype ·matrix(t, 〈1, 1〉)

14

V, C ` A : matrix(t, n1, n2) V, C ` E : matrix(u,m1,m2)
maxs(〈n1, n2〉, 〈m1,m2〉) = 〈n1, n2〉 u vt t

V, C ` A := E : unit
(assign-1)

V, C ` E : τ x 6∈ dom(V) x 6∈ dom(C)
V ∪ {x : τ}, C ` x := E : unit

(assign-2)

V, C ` C : t x 6∈ dom(V) x 6∈ dom(C)
V, C ∪ {x : t} ` constant x := C : unit

(const-assign)

V, C ` E : boolean V, C ` S1 : unit V, C ` S2 : unit

V, C ` if E S1 else S2 end : unit
(if-else)

V, C ` E : boolean V, C ` I : boolean for all I ∈ I V, C ` S : unit

V, C ` while E invariant I S end : unit
(while)

V, C ` E : boolean

V, C ` assert E : unit
(assert)

V, C ` E : boolean

V, C ` assume E : unit
(assume)

V, C `M : τ V, C ` E : boolean

V, C `M :| E : unit
(nondet-update)

V, C ` S1 : unit V, C ` S2 : unit

V, C ` choice S1 or S2 end : unit
(nondet-choice)

V1, C1 ` S1 : unit V1 ∪ V2, C1 ∪ C2 ` S2 : unit

V1 ∪ V2, C1 ∪ C2 ` S1;S2 : unit
(seq-stmt)

V, C, x : τi, y : τ2 ` S : unit

V, C ` function y = f(x) S end : τi → τo
(func-decl)

Figure 3: Typing rules for statements.

15

parameters to intrinsic types and let σs be a mapping from type parameters
to shapes. The notation τ [σt, σs] then denotes the type τ instantiated with
the mappings σt and σs. Thus, if the types of all inputs are instantiations of
the inputs τi of the function type signature under the type parameter map-
pings σt and σs, the output type of the function call will be τo instantiated
with σt and σs. Other noteworthy rules are (shp-1) and (shp-2), which
are used for coercion of constant integer expressions to shape information
in the type signatures for data-dependent expressions. This coercion is only
possible for positive integers. Additionally, we also have rules for quantified
expressions and matrix literals. A matrix literal consists of n rows, which in
turn consists of m scalar expressions of an intrinsic type t.

Among the rules for statements in Fig. 3, it is worth noting that there
are three cases for assignment statements. One for the case when a variable
is assigned for the first time and one for the case when the variable has been
assigned before. Separate rules are needed, since the type of a variable is not
allowed to change once it is assigned for the first time. Finally, there is also
a separate rule for constant declaration.

The type inference for expressions is done using a traditional unification
algorithm [20, 22], where the constraints are derived directly from the typing
rules. Statements, on the other hand, are handled using forward propagation
of the type information. This is similar to the approach in [1, 14], where a
combination of forward and backward propagation of shape and type infor-
mation is used. Intrinsic type and shape are orthogonal aspects, meaning
that inference can be done independently for intrinsic type and shape. In-
ference of intrinsic type is standard. For shape inference we use the shape
functions (9), (10) and (11) to build constraints. The inference is successful
if all nodes in the AST are assigned an intrinsic type and a valid (finite)
shape.

5 Verification

Our verification approach is based on standard assume-guarantee reasoning.
We use a modular verification technique, checking every function in isolation.
The preconditions of the function are turned into assumptions and the post-
conditions into assertions. On function calls the preconditions are asserted
and the postconditions assumed. In the type inference, we have inferred ex-
act intrinsic type and shape (i.e. instantiation of type parameters) for all
function calls. All invoked user-implemented functions are verified indepen-
dently for each type instantiation occurring in the program. Thus, we do
not verify that a function satisfies its contract for every valid instantiation
of type parameters, but only for the instantiations actually used. Hence, the
inference of types and shapes is non-modular, while the verification of func-

16

tions is done modularly based on the inferred type and shape information.
This eliminates the need to quantify over types and shapes in the verification
of functions.

The statement language, given in (5), has standard weakest precondition
semantics. Loops are verified based on the classical Hoare logic in the same
way as e.g. Spec# [3] and Boogie [2]. In addition to verifying conformance
to contracts, we prove the absence of runtime errors in the function imple-
mentations. The runtime errors checked for are bounds on matrix accesses,
integer overflow and division by zero. The verifier does, however, only check
partial correctness. We do not currently check termination for neither iter-
ation nor recursion. Termination checks could be added analogously to how
it has been done in other verifiers [10], however, we have chosen to focus on
verification of properties regarding matrix computations.

To verify MATLAB code that involves matrices and vectors, matrix func-
tions need to be efficiently encoded in a verifier. We have used the SMT solver
Z3 [12] by Microsoft Research as a verification backend. Z3 includes a theory
for arrays [13], which we use to represent our matrices. The main constructs
in this theory are the select and store expressions. The expression select(a, i)
returns the value stored at position i in an array, while store(a, i, x) returns
a new array identical to a, but with the value x on position i. We encode
matrices as arrays of arrays. Each subarray is thus a matrix row. In the
representation of a row vector there is only one subarray. For column vectors
all subarrays are of size 1. Scalars, i.e. matrices of shape 〈1, 1〉, are not
encoded as arrays.

Matrices in this case have fixed size that can be determined statically and
we can thus use this information when generating verification conditions. In
this section we present two approaches to encoding the verification conditions.
The approaches are then evaluated on a number of examples in section 6.
In the first approach, which we call axiomatisation, we view the functions
as a library and provide pre- and postconditions, as in traditional program
verification. It is thus possible to axiomatise the functions directly. In the
second approach we use the inferred information about matrix shapes to
expand the matrix functions.

5.1 Axiomatisation

In the axiomatisation approach, matrix functions are axiomatised to have
their desired meanings. Functions may have several different axioms for
different input types, in which case the correct axiom is chosen based on
the inferred types. Consider for instance the axioms for an element-wise
function f in (12). Here fs denotes the corresponding scalar function for
f . The different axiomatisations are separated by renaming functions based
on input types and shapes. We also handle polymorphism by generating

17

separate axioms for each type instantiation occurring in the program. Note
also that all the axioms are actually quantified over the function inputs,
which we have left out here for brevity. The complete axiom for a function
f(a, b) is thus ∀ a : t1, b : t2 ·A, where A is an axiom in the format presented
below.

a : matrix(t, 〈n1, n2〉)
b : matrix(t, 〈n1, n2〉)

∀ i1 : int32, i2 : int32 · 1 ≤ i1 ≤ n1 ∧ 1 ≤ i2 ≤ n2
=⇒ f(a, b)(i1, i2) = fs(a(i1, i2), b(i1, i2))

a : matrix(t, 〈n1, n2〉)
b : t

∀ i1 : int32, i2 : int32 · 1 ≤ i1 ≤ n1 ∧ 1 ≤ i2 ≤ n2
=⇒ f(a, b)(i1, i2) = fs(a(i1, i2), b)

a : t
b : matrix(t, 〈n1, n2〉)

∀ i1 : int32, i2 : int32 · 1 ≤ i1 ≤ n1 ∧ 1 ≤ i2 ≤ n2
=⇒ f(a, b)(i1, i2) = fs(a, b(i1, i2))

(12)

In (13) we list axioms for some other common functions, which are not
element-wise. In these formulas we have the matrices a : matrix(t, 〈n1, n2〉)
and b : matrix(t, 〈n1, n2〉).

a ∗ b : ∀ i1 : int32, i2 : int32 · 1 ≤ i1 ≤ n1 ∧ 1 ≤ i2 ≤ n2
=⇒ (a ∗ b)(i1, i2) =

∑k=n2
k=1 (a(i1, :). ∗ b(:, i2))(k)

transpose(a) : ∀ i1 : int32, i2 : int32 · 1 ≤ i1 ≤ n1 ∧ 1 ≤ i2 ≤ n2
=⇒ transpose(a)(i2, i1) = a(i1, i2)

size(a) : size(a)(1, 1) = n1 ∧ size(a)(1, 2) = n2
length(a) : length(a) = max(n1, n2)

(13)

The operator ∗ actually have several different axioms for different input types
in the same way as f in (12), but we only give the matrix multiplication case
here.

We further have the following axioms for collapsing functions. Here we
have a matrix a : matrix(t, 〈n1, n2〉) and a row vector b : matrix(t, 〈1, n2〉), the
transpose bT is then the corresponding column vector:

sum(a) : ∀ i2 : int32 · 1 ≤ i2 ≤ n2
=⇒ sum(a)(1, i2) =

∑k=n1
k=1 a(k, i2)

sum(b) : sum(b) =
∑k=n2

k=1 b(1, k)
sum(bT) : sum(bT) = sum(b)
all(a) : ∀ i2 : int32 · 1 ≤ i2 ≤ n2

=⇒ all(a)(1, i2) = ∀ k : int32 · 1 ≤ k ≤ n1 · a(k, i2)
all(b) : all(b) = ∀ k : int32 · 1 ≤ k ≤ n2 =⇒ b(1, k)
. . .

(14)

Collapsing functions, such as Σ here, must be defined recursively in SMT
solvers. The functions all and any are, however, exceptions, as these func-
tions can be directly encoded using universal and existential quantifiers.

The axioms for element-wise functions, such as f in (12), can be directly
and efficiently encoded in SMT solvers. Efficient encoding of collapsing func-
tions and other recursively defined functions, on the other hand, is hard [18].

18

The reason is that proofs of properties regarding these functions are typically
done by induction, which typically cannot be done automatically by an SMT
solver. The needed specifications for induction proofs for these functions
would thus have to be provided manually, which is not feasible in practice.

5.2 Expansion

Instead of using axioms, we can utilise the inferred shapes of matrices to ex-
pand the definitions of matrix functions. We will see later that this approach
is very efficient for matrices of relatively small size.

We have the matrices a : matrix(t, 〈n1, n2〉), b : matrix(t, 〈n1, n2〉) and
c : matrix(t, 〈1, n2〉). Then JaK denotes the syntactically expanded matrix:

JaK =

 Ja(1, 1)K · · · Ja(1, n2)K
...

. . .
...

Ja(n1, 1)K · · · Ja(n1, n2)K

 (15)

where also matrix accesses are expanded. The matrix accessor a(i1, i2) is
defined as:

Ja(i1, i2)K = JaK(i1, i2) (16)

If a is an expanded matrix and its indices are constant, the correct element
can be directly chosen. However, we still need to use arrays in the SMT
encoding as indices in matrix accesses are not always constant. If a is an
identifier then the expansion JaK does nothing. This is actually important in
order to handle many cases efficiently. This means that we can use quantified
expressions to write down expressions that are effectively scalar and hence
not expanded. This is particularly useful for verification of loops, such as in
Fig. 1, where no matrix functions other than matrix accessors are used in
the invariants.

The expanded definition of an element-wise function f applied to two
expanded matrices JaK and JbK is given as follows:

Jf(a, b)K =

 fs(Ja(1, 1)K, Jb(1, 1)K) · · · fs(Ja(1, n2)K, Jb(1, n2)K)
...

. . .
...

fs(Ja(n1, 1)K, Jb(n1, 1)K) · · · fs(Ja(n1, n2)K, Jb(n1, n2)K)

 (17)

Again, the function fs here denotes the corresponding scalar version of the
function f . The expansions of all other element-wise functions follow the
same pattern.

Collapsing functions, such as sum and all, are also expanded. The ex-
pansions for sum are defined in the following way:

Jsum(c)K = Jc(1)K + . . .+ Jc(n1)K Jsum(cT)K = Jc(1)K + . . .+ Jc(n1)K

Jsum(a)K =
[
Ja(1, 1)K + . . .+ Ja(n1, 1)K . . . Ja(1, n2)K + . . .+ Ja(n1, n2)K

]
(18)

19

Finally, there is also a special case for expansion of the multiplication operator:

Ja ∗ bK =

 Jsum(a(1, :) .∗ b(:, 1))K · · · Jsum(a(1, :) .∗ b(:, n3))K
...

. . .
...

Jsum(a(n1, :) .∗ b(:, 1))K · · · Jsum(a(n1, :) .∗ b(:, n3))K

 (19)

All other functions are encoded in a similar way as the functions presented
above.

As an example on how the expansion works, consider the expansion of an
expression all(sum(x + ones(3, 3)) > 0), where the variable x has the type
matrix(double, 〈3, 3〉):

(x(1, 1) + 1) + (x(2, 1) + 1) + (x(3, 1) + 1) > 0
∧ (x(1, 2) + 1) + (x(2, 2) + 1) + (x(3, 2) + 1) > 0
∧ (x(1, 3) + 1) + (x(2, 3) + 1) + (x(3, 3) + 1) > 0

Note that > is an element-wise operator. Not also that ones is expanded to
a matrix literal of the given size, in which each element is 1. The expansion
of the matrix accessor can then directly pick the correct element.

6 Benchmarks

In this section we evaluate the two approaches to encoding verification con-
ditions, described in the previous section, on a number of small examples.
We have used Z3 version 4.3.0 on a modern laptop in the evaluation. We
also compare the performance of our approaches to Simulink Design Veri-
fier3 (SLDV). SLDV is a MATLAB toolbox for verification Simulink models,
which also handles a large subset of Embedded MATLAB. We used MATLAB
2014a and SLDV 2.6 in the evaluation.

We start with proving associativity of matrix addition and associativity
of matrix multiplication using our encoding in an SMT solver. The execution
times for different sizes of matrices are listed in Table 3. In the table, we use
Ax to denote axiomatisation and Exp to denote expansion. For the element-
wise function matrix addition, the axiom encoding is very efficient and the
execution time is invariant with respect to the size of the matrix. For the
matrix multiplication function, which involves recursively defined functions,
axiomatisation is not a feasible approach, since inductive proofs regarding
the properties of the function would be needed. The SMT solver is only able
to unfold the definition for matrices up to the size 〈3, 3〉. Expansion, on the
other hand, is an efficient approach as long as the matrices are kept fairly
small. SLDV can prove associativity of matrix addition, but the scalability
is far lower than for both of our approaches. Proving associativity of matrix

3http://www.mathworks.com/products/sldesignverifier/

20

Table 3: Execution times for proving associativity of matrix addition and
matrix multiplication for different matrix sizes

Addition
〈n, n〉 Ax (s) Exp (s) SLDV (s)

25 1.1 2.0 8.0
50 1.1 3.7 202.0
100 1.1 10.2 > 300.0
200 1.1 35.3 > 300.0
400 1.1 151.0 > 300.0

Multiplication
〈n, n〉 Ax (s) Exp (s) SLDV (s)

3 1.1 1.2 n/a
4 n/a 1.3 n/a
5 n/a 1.6 n/a
10 n/a 6.2 n/a
20 n/a 81.0 n/a

multiplication fails, because SLDV cannot handle nonlinear arithmetic on
real numbers.

We would like to point out that the most interesting part of these bench-
marks is the growth rate of the execution times rather than the actual exe-
cution time. This is because of the current implementation of the expansion
in the tool, which generates a new AST from the unexpanded AST. Copying
of subtrees in this step currently amounts to the vast majority of the execu-
tion time. This step could easily be optimised by doing the expansion and
encoding into the SMT format in one step.

Fig. 4 lists a function that creates a square matrix of the size given
by the input parameter n, where each element in row i contains the value
i. This example demonstrates how the MATLAB built-in functions can be
used to write compact and readable specifications. It also demonstrates
the use of the special colon operator for assigning or accessing entire rows
or columns, which can also be useful for writing specifications. Note also
that the function input parameter n is used as a type parameter. This
implicitly requires that n is a scalar of intrinsic type int32 and is declared
as a constant in the calling function. It also means that the input parameter
n cannot be assigned in the function, which is normally possible. Note that
the functionality provided by the function could be implemented in one line,
m := transpose(double(1:n))∗ones(1, n), but the goal here is to demonstrate
language features.

Also recursive functions are supported. Fig. 5 lists a recursive function
calculating the factorial x! of a positive integer x. We do not, however,
check termination for recursion, and thus only partial correctness is verified.
Note that user-defined functions cannot be expanded, as is done for built-
in functions, since the verifier cannot automatically deduce how a function
should be expanded. Thus, axiomatisation is always used for these functions.

Fig. 6 lists a function returning a column vector containing the n first Fi-
bonacci numbers. This example also illustrates the use of description strings
for contract conditions. These strings are used both as a description in the
source code for the developer and also by the verification tool to help the

21

1 function m = matrix_create(n)
2 %@ typeparameters: n
3 %@ types: n:int32, m:matrix(double,n,n)
4 %@ ensures: all(all(m == transpose(double(1:n))*ones(1,n)))
5 i := 1;
6 m := zeros(n,n);
7 while (i <= n)
8 %@ invariant: 1<=i && i<=n+1
9 %@ invariant: \forall j:int32 .

10 %@ (1<=j && j<=i-1 ==> all(m(j,:)==double(j)))
11 m(i,:) := double(i);
12 i := i+1;
13 end
14 end

Figure 4: A MATLAB function creating a matrix of shape 〈n, n〉, where each
element in row i has the value i.

1 function y = fac(x)
2 %@ types: x:int32, y:int32
3 %@ requires: x >= 0
4 %@ ensures: x > 0 ==> y == x*fac(x-1)
5 %@ ensures: x == 0 ==> y == 1
6 if(x == 0)
7 y := 1;
8 else
9 y := x*fac(x-1);
10 end
11 end

Figure 5: A recursive MATLAB function.

22

1 function fibs = fibonacci(n)
2 %@ typeparameters: n
3 %@ types: n:int32, fibs: matrix(double,n,1)
4 %@ requires ’Inputs larger than 1 supported’ : n > 1
5 %@ ensures ’Fibonacci numbers 3 to n’:
6 %@ \forall j:int32 .
7 %@ ((3<=j && j<=n) ==> (fibs(j) == fibs(j-1)+fibs(j-2)))
8 %@ ensures ’The first fibonacci number is 0’ : fibs(1) == 0
9 %@ ensures ’The second fibonacci number is 1’ : fibs(2) == 1

10 i := 2;
11 fibs := zeros(n,1);
12 fibs(1) := 0;
13 fibs(2) := 1;
14 while (i < n)
15 %@ invariant ’Loop index between 2 and n’ : 2<=i && i<=n
16 %@ invariant ’Initial fibonacci numbers’ : fibs(1)==0 && fibs(2)==1
17 %@ invariant ’Elements up to i calculated’ :
18 %@ \forall j:int32 .
19 %@ ((3<=j && j<=i) ==> (fibs(j) == fibs(j-1)+fibs(j-2)))
20 i := i+1;
21 fibs(i) := fibs(i-1)+fibs(i-2);
22 end
23 end

Figure 6: A MATLAB function for calculating the n first Fibonacci numbers.

developer locate the error in case the program does not verify.
The next example, listed in Fig. 7, is significantly more complex than

the previous examples. It is an implementation of the Gaussian elimination
method for solving systems of linear equations. The function provides the
solution to the equation system A ∗ x = f , where A is a matrix, f is a
column vector and x is a column vector of unknown values. Here we use the
function answer(A, f) to specify the desired solution. The postcondition of
the answer function states that the result x satisfies the condition A∗x = f .
However, we do not provide an implementation for the answer function,
and hence the function is not verifiable. We use the function old(x) in the
invariants, denoting the initial value of an input parameter x. The error
statement used on line 14 is used to model exceptions. It is a short-hand
for assume false, which here intuitively can be understood as an infinite
loop. This works, as we are only interested in the case when the program
terminates normally, i.e., partial correctness. It is also worth noting that ∼

denotes negation in MATLAB and ∼= hence denotes the relational operator
not equal to.

The function consists of two loops. The first loop transforms A into an
upper triangular matrix, while the second one transforms A into a diag-
onal matrix with only ones in the diagonal. All transformations preserve

23

the property all(A ∗ answer(old(A), b) = f). This means that at the end
answer(old(A), b) = f , i.e. f contains the solution to the equation system.

The first loop traverses all columns and transforms all the rows below
the diagonal in such a manner that the elements below the diagonal become
zero. If an element in the diagonal would be zero, the matrix is singular
and there are no solutions for the equation system. In this case we have an
error. The nested loop performs the transformations, one row at the time.
Each row j below and including the diagonal at column k is transformed as
A(j, :) := A(j, :) − A(k, :) .∗ A(j, k) ./ A(k, k). This has the effect of setting
all elements A(j, k) below the diagonal element A(k, k) to zero, while also
not changing elements to the left of column k in row j that are already zero.
The right-hand side f is transformed in the same way. The loop invariants
capture the progress up to index k and j, respectively.

The second loop performs back substitution of the results. Starting from
the lower right corner of A, the value of x(k) is stored in f(k) and the
corresponding diagonal element of A is set to one. The inner loop traverses
all rows j above the diagonal for a column k and subtracts the term f(k) .∗
A(j, k) from f(j) while A(j, k) is set to zero. This essentially moves the term
x(k) .∗ A(j, k) to the right-hand-side of the equation.

The advantage of expanding function definitions is here that we can use
matrix multiplication directly in specifications, without any extra lemmas
regarding the recursively defined sum function. This decreases annotation
overhead and improves ease of use, when the user can analyse the problem
on a higher level of abstraction. The major problem with the specification of
the gauss function, from a usability point-of-view, is still the large amount
of invariant conditions needed to track state information. In particular, here
we often need duplicate information in order to state that the inner loops
maintain the invariant properties of the outer loop. This could potentially
be partially remedied by techniques for inference of invariants [15, 16].

Verification benchmarks for the example programs described above, as
well as the max_f function listed in Fig. 1, are given in Table 4. The
benchmarks lists execution times for verification of the programs with differ-
ent input sizes. Again, expansion works well for matrices of relatively small
size. The axiomatisation approach is only effective for the fibonacci exam-
ple, where no recursively defined functions are used. In the max_f case, the
axiomatisation approach works to prove the postcondition on line 4, which
uses the all collapsing function. The SMT solver is, however, not able to
prove the postcondition on line 5, which uses the any function. The problem
seems to be the combination of universal and existential quantifiers used in
the axiom for the any function: ∀ a : matrix(boolean, 〈n, 1〉) · (any(a) =
∃ j : int32 · 1 ≤ j ≤ n ∧ a(j)). It seems that the SMT solver is not able to
instantiate these quantifiers successfully. In general, we noted that the SMT
solver seems to quickly run into problems with the axioms for all and any.

24

1 function f = gauss(A,b)
2 %@ typeparameters: n
3 %@ types: A:matrix(double,n,n), b:matrix(double,n,1), f:matrix(double,n,1)
4 %@ ensures: all(f == answer(A,b))
5 k := 1;
6 f := b;
7 while(k <= length(b))
8 %@ invariant: 1<=k && k<=length(b)+1
9 %@ invariant: all(A*answer(old(A),b)==f)

10 %@ invariant:
11 %@ \forall u:int32, v:int32 . (1<=u && u<k && u<v && v<=n ==> A(v,u)==0)
12 %@ invariant: \forall v:int32 . (1<=v && v<k ==> A(v,v)~=0)
13 if (A(k,k) == 0)
14 error ’Matrix is singular’
15 end
16 j := k+1;
17 while (j <= length(b))
18 %@ invariant: 1<=k && k<=length(b)
19 %@ invariant: k<j && j<=length(b)+1
20 %@ invariant: all(A*answer(old(A),b)==f)
21 %@ invariant:
22 %@ \forall u:int32, v:int32 . (1<=u && u<k && u<v && v<=n ==> A(v,u)==0)
23 %@ invariant: \forall v:int32 . (1<=v && v<=k ==> A(v,v)~=0)
24 %@ invariant: \forall v:int32 . (k<v && v<j ==> A(v,k)==0)
25 f(j) := f(j)-f(k).*A(j,k)/A(k,k);
26 A(j,:) := A(j,:)-A(k,:).*A(j,k)./A(k,k);
27 j := j+1;
28 end
29 k := k+1;
30 end
31 k := n;
32 while (1 <= k)
33 %@ invariant: 0<=k && k<=n
34 %@ invariant: all(A*answer(old(A),b)==f)
35 %@ invariant: \forall v:int32 . (1<=v && v<=n ==> A(v,v)~=0)
36 %@ invariant: \forall v:int32 . (k<v && v<=n ==> A(v,v)==1)
37 %@ invariant:
38 %@ \forall u:int32, v:int32 . (1<=u && u<=n && u<v && v<=n ==> A(v,u)==0)
39 %@ invariant:
40 %@ \forall u:int32, v:int32 . (k<u && u<=n && 1<=v && v<u ==> A(v,u)==0)
41 f(k) := f(k)/A(k,k);
42 A(k,k) := 1;
43 j := k-1;
44 while (1 <= j)
45 %@ invariant: 1<=k && k<=n
46 %@ invariant: 0<=j && j<k
47 %@ invariant: all(A*answer(old(A),b)==f)
48 %@ invariant: \forall v:int32 . (k<=v && v<=n ==> A(v,v)==1)
49 %@ invariant: \forall v:int32 . (1<=v && v<=n ==> A(v,v)~=0)
50 %@ invariant:
51 %@ \forall u:int32, v:int32 . (1<=u && u<=n && u<v && v<=n ==> A(v,u)==0)
52 %@ invariant:
53 %@ \forall u:int32, v:int32 . (k<u && u<=n && 1<=v && v<u ==> A(v,u)==0)
54 %@ invariant: \forall v:int32 . (j<v && v<k ==> A(v,k)==0)
55 f(j) := f(j)-f(k).*A(j,k);
56 A(j,k) := 0;
57 j := j-1;
58 end
59 k := k-1;
60 end
61 end

Figure 7: Gaussian elimination example program

25

1 function y = testfunc(x)
2 %@ types: y:matrix(double,1,2), x:matrix(double,1,2)
3 %@ requires: all(x == 0)
4 %@ ensures: all(y >= 0)
5 y := x;
6 end

Figure 8: The axiomatisation of the all and any functions seems to cause
problems for the SMT solver.

Table 4: Benchmarks for the example programs
max_f

n Ax (s) Exp (s) SLDV (s)
10 n/a 1.2 11.0
20 n/a 1.2 38.0
30 n/a 1.2 200.0

1000 n/a 4.5 > 300.0
2000 n/a 16.5 > 300.0
3000 n/a 61.3 > 300.0

matrix_create
n Ax (s) Exp (s) SLDV (s)
10 n/a 1.4 < 1.0
25 n/a 2.2 2.0
50 n/a 6.0 33.0
75 n/a 13.8 178.0
100 n/a 30.2 > 300.0
150 n/a 111.8 > 300.0

fibonacci
n Ax (s) Exp (s) SLDV (s)

250 1.3 4.5 n/a
500 1.3 13.7 n/a
1000 1.3 50.5 n/a

gauss
n Ax (s) Exp (s) SLDV (s)
2 n/a 3.3 n/a
3 n/a 10.3 n/a
4 n/a n/a n/a

This is also demonstrated in the example listed in Fig. 8, which the verifier
is unable to prove using the axiomatisation approach. The verifier is not able
to utilise the information expressed using the axiomatised version of all in
the precondition to establish the postcondition.

For the gauss example, the verifier is only successful on inputs up to size 3.
The problem is proving invariant preservation of all(A∗answer(old(A), b) =
f) after the row update in the first inner loop. The SMT solver returns
unknown, possibly due to the complex expression with many array updates
in the SMT encoding, due to the combination of matrix multiplication and
row update.

We also evaluated the performance of SLDV on the example programs.
SLDV unfolds loops for verification, which means static loop bounds are
needed. We modified the programs to use for-loops instead instead of while-
loops, since this seemed to significantly more efficient in SLDV. The tool was
able to verify max_f and matrix_create, but the scalability is significantly
lower than for our expansion approach. Presumably because of the loop
unfolding. Verification of the gauss program failed because it involves non-

26

linear arithmetic. We were not able to encode the specification of fibonacci
in SLDV in a good way, as there is no support for quantifiers.

The results indicate that expansion can be a robust and efficient approach,
while the performance of axiomatisation heavily depends on how well the
verifier does quantifier instantiation in a given situation. We have here only
evaluated the axiomatisation and expansion approaches separately. The re-
sults, however, suggests that a hybrid approach, where only functions that are
problematic to axiomatise effectively are expanded, could be efficient. It is
worth noting that we have used Z3 with the default settings when obtaining
our benchmarks. Z3 uses model-based quantifier instantiation (MBQI) [?]
by default. Compared to using patterns for quantifier instantiation, MBQI
seems to significantly improve the performance in our case. It may, however,
be possible to tune the settings for even better performance.

7 Related work

Contract-based static verification has been implemented for many different
programming languages e.g., Java [7, 9], C# [3], .NET [15] and C [11]. Arrays
are supported in all these verifiers. It would be possible to implement the
matrix functions as a library in any of these frameworks. However, there are
three challenges: 1) The languages are statically and explicitly typed. 2) We
would need to manually provide contract annotations to recursively defined
functions such as e.g. the sum in matrix multiplication to inductively prove
the needed properties of them. Explicitly providing all lemmas that can be
possibly needed in practise for e.g. matrix multiplication is not practical. 3)
Arrays are mutable objects, which complicates reasoning.

The main challenge here is automated verification of recursive functions,
such as the functions sum and prod with one argument. In [18] they dis-
cuss axiomatisations of comprehension functions, which are similar to our
recursive functions, suitable for use in SMT solvers. There the bounds on
the comprehensions are not static. Their focus is on verification of loops
that computes results involving these comprehensions, not programs that
use functions specified by them. This means that the recursive definitions
typically have to be unfolded only a few times. Their work focuses on bound-
ing the unfolding. Here the problem is that unless we manually provide the
desired properties of recursively defined functions, the function definitions
have to be unfolded all the way. This becomes extremely inefficient in an
SMT solver. However, all our recursive functions can only be applied to
matrices with known static bounds.

Simulink Design Verifier (SLDV) can handle a large subset of the built-
in functions in Embedded MATLAB. How matrix calculations are handled
cannot be found in the documentation. The performance is not always good,

27

e.g. proving associativity of matrix multiplication fails (in MATLAB 2014a,
SLDV 2.6), since nonlinear arithmetic is not supported for rational numbers.
Loops are unfolded, which means static bounds on loops are needed. SLDV
is perhaps more targeted towards verification of Simulink models where a lot
of the functionality is described as state machines using Stateflow.

Our verification approach relies on inference of intrinsic types and shapes
of matrices. Inference of this type of information for MATLAB programs
have been studied before in the context of program optimisation [14, 1, 17].
The goal there is to calculate shapes and types of matrices in order to pre-
allocate matrices and avoid bounds checks at runtime. They do not use any
type annotations to guide the inference. In their case, an unknown type
or shape only means fallback to dynamic inference. In this paper concrete
values for the matrix shapes need to be given, but the axiomatic approach
to verification should work with symbolic bounds also. One important dif-
ference is that we require that matrices do not change their shape, which
is handled in their frameworks. This is not a necessary restriction in our
case either. However, we can only handle size of matrices that depend on
constants, i.e., data-dependent sizes in loops and recursion is not allowed. In
[14, 1] they use a combination of forward propagation and backward propa-
gation of type information. This is very similar to our constraint-based type
inference. In [17] they use algebraic properties regarding shapes of the matrix
operators in MATLAB to perform shape analysis. They allow matrices with
arbitrary many dimensions. They can also infer other relationships between
data than concrete values obtained by forward and backward propagation
in [14, 1]. Using the constraint systems obtained in our inference approach
to obtain dynamic constraint will probably be far less efficient due to the
large numbers of constraints generated. MATLAB also performs static type
and shape analysis for data in Embedded MATLAB. It appears that forward
propagation of matrix shapes is performed. Variable-sized data can be used,
but it has to be explicitly enabled. As function parameters can be declared
to be constants, we can use these parameters in matrix shapes, which can-
not be done for fixed-sized data in Embedded MATLAB. However, currently
they can use more complex expressions in matrix creation expressions. These
limitations can be remedied in our tool also, by increasing the subset of the
language handled by the type checker.

Languages that are designed to be aware of the shape of the data exist.
The language FiSH [8] allows type annotations involving matrix and vector
shapes. Also an inference algorithm is discussed. However, they do not allow
converting values to matrix shapes, as we do e.g. for the function zeros. A
dependent type system in ML [23, 24] has also been studied. One goal with
this type system is analysis of array bounds. The approach is based on user
annotations of types together with a local inference algorithm. The index
language used for array shapes can be arbitrarily complex only limited by

28

the choice of constraint solver. This approach is potentially more general
than ours, but it is aimed at a functional language.

Many functions are partial, e.g. division and matrix access. We do special
well-formedness checks to ensure that functions are only applied in their
domain. This is similar to many other verifiers [9, 3, 15, 11].

To handle the problem with recursive functions, abstract interpretation
techniques [15, 16] could be used to automatically infer properties about the
results. In [16] they infer loop invariants that are then used to prove that the
resulting matrix is e.g. upper-triangular, diagonal, etc. However, this ap-
proach seems to require that the result has similar shape as the argument(s).

8 Conclusions

In this paper we have described an approach to automatically verify that
programs that manipulate matrices satisfy specifications given as contracts.
Furthermore, the verifier checks well-formedness constraints such as absence
of errors of integer over- and underflow, division by zero and matrix accesses
out of bounds. The target for our approach is Embedded MATLAB and
Simulink, which are programming languages with a strong focus on numeri-
cal computing. The most important goal is efficient handling of the built-in
operations for matrix manipulation. Our approach handles the most com-
mon matrix manipulation functions in Embedded MATLAB, while-loops and
recursion. The key feature is type inference to statically infer intrinsic types
and shapes of matrices. Hence, the size of all matrices are static and deter-
mined at compile-time, which is the standard behaviour for Emedded MAT-
LAB and Simulink. This allows efficient handling of the different MATLAB
functions in a SMT solver. We evaluated two approaches: direct axiomatisa-
tion of matrix functions and expansion of matrix functions. We found that
expansion works very well for relatively small matrices commonly found in
embedded control and signal processing applications. This allows complete
automation with relatively small annotation overhead. In the axiomatisation
approach we need to either manually provide the needed specifications for
recursively defined functions or have the verifier unfold the function defini-
tion, neither of which are desirable. We demonstrated the usefulness of our
approach on a number of examples. The approach has also been used success-
fully to check a Simulink model that contained several hundred blocks. This
model involved scalar control logic mixed with matrix calculations. Most of
the matrix calculations were carried out element-wise on small vectors (1x3
and 1x4 element row vectors). However, matrix multiplication involving up
to 6x4 element matrices was also included. Even if the verified properties
focused on control logic, the example demonstrates that the approach scales
to non-trivial models.

29

There are many directions for future work. Matrix accesses are now lim-
ited to one element or a complete row or column. Embedded MATLAB
allows more flexibility and allows choosing any submatrix. This should not
present any fundamental problem for our approach. Complete support for
the control flow constructs in Embedded MATLAB should also be provided.
Currently, only if-statements and while-loops are supported. The verifier also
only checks partial correctness. The plan is to implement checks for termina-
tion of both iteration and recursion. Techniques based on abstract interpre-
tation, e.g. [16], could perhaps also be used to infer the needed properties of
recursively defined functions, which would allow for more automation when
axiomatisation of functions are used. However, we believe that our approach
is a good start towards fully automated efficient verification of Embedded
MATLAB programs.

References
[1] G. Almási and D. Padua. MaJIC: Compiling MATLAB for speed and

responsiveness. SIGPLAN Not., 37(5):294–303, 2002.

[2] M. Barnett, B.-Y. E. Chang, R. Deline, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
F. S. de Boer and et. al., editors, FMCO’05, volume 4111 of LNCS,
pages 364–387. Springer, 2006.

[3] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller, W. Schulte,
and H. Venter. Specification and verification: The Spec# experience.
Communications of the ACM, 54(6), 2011.

[4] P. Boström. Contract-based verification of Simulink models. In
ICFEM2011, volume 6991 of LNCS. Springer, 2011.

[5] P. Boström, R. Grönblom, T. Huotari, and J. Wiik. An approach
to contract-based verification of Simulink models. Technical Re-
port 985, TUCS, 2010. Tool: http://users.abo.fi/pbostrom/
slverificationtool/.

[6] P. Boström, L. Morel, and M.Waldén. Stepwise development of Simulink
models using the refinement calculus framework. In C. B. Jones, Z. Liu,
and J. Woodcock, editors, ICTAC’07, volume 4711 of LNCS, pages 79–
93. Springer, 2007.

[7] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of JML tools and applica-
tions. International Journal on Software Tools for Technology Transfer,
7(3):212–232, 2005.

30

[8] C. C. B. Jay and P. Steckler. The functional imperative: Shape! In Pro-
ceedings of the 7th European Symposium on Programming: Programming
Languages and Systems, ESOP ’98, pages 139–153. Springer-Verlag,
1998.

[9] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions:
Advanced specification and verification with JML and ESC/Java2. In
FMCO2006, volume 4111 of LNCS. Springer, 2006.

[10] B. Cook, A. Podelski, and A. Rybalchenko. Proving program termina-
tion. Commun. ACM, 54(5):88–98, 2011.

[11] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-C: A software analysis perspective. In G. Eleft-
herakis, M. Hinchey, and M. Holcombe, editors, SEFM’12, volume 7504
of LNCS, 2012.

[12] L. de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and J. Rehof, editors, TACAS’08, volume 4963 of LNCS,
pages 337–340. Springer, 2008.

[13] L. de Moura and N. Bjorner. Generalized, efficient array decision pro-
cedures. In Formal Methods in Computer-Aided Design, 2009. FMCAD
2009, pages 45–52, Nov 2009.

[14] L. de Rose and D. Padua. Techniques for the translation of MATLAB
programs into Fortran 90. ACM Transactions on Programming Lan-
guages and Systems, 21:286–323, 1999.

[15] M. Fähndrich and F. Logozzo. Static contract checking with abstract
interpretation. In FoVeOOS’10, volume 6528 of LNCS. Springer, 2011.

[16] T. A. Henzinger, T. Hottelier, L. Kovács, and A. Voronkov. Invariant
and type inference for matrices. In VMCAI2010, volume 5944 of LNCS,
2010.

[17] P. G. Joisha and P. Banerjee. An algebraic array shape inference sys-
tem for MATLAB R©. ACM Trans. Program. Lang. Syst., 28(5):848–907,
September 2006.

[18] K. R. M. Leino and R. Monahan. Reasoning about comprehensions with
first-order SMT-solvers. In SAC’09. ACM, 2009.

[19] Mathworks Inc. Simulink. http://www.mathworks.com, 2014.

[20] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, 1978.

31

[21] B. C. Pierce. Types and Programming Languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[22] J. A. Robinson. A machine-oriented logic based on the resolution prin-
ciple. J. ACM, 12:23–41, January 1965.

[23] H. Xi. Dependent types in practical programming. In POPL’99. ACM,
1999.

[24] H. Xi. Dependent ML: An approach to practical programming with
dependent types. Journal of Functional Programming, 17(2), 2007.

32

Joukahaisenkatu 3-5 A, 20520 TURKU, Finland | www.tucs.fi

University of Turku
Faculty of Mathematics and Natural Sciences
• Department of Information Technology
• Department of Mathematics
Turku School of Economics
• Institute of Information Systems Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

ISBN 978-952-12-3053-0
ISSN 1239-1891

