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Abstract

Dataflow programming has received much recent attention within the signal pro-
cessing domain as an efficient paradigm for exploiting parallelism. In dataflow pro-
gramming, systems are modeled as a static network of actors connected through
asynchronous order-preserving channels. In this paper we present an approach to
contract-based specification and automated verification of dynamic dataflow net-
works. The verification technique is based on encoding the dataflow networks and
contracts in the guarded command language Boogie.



1 Introduction

Modern software systems are increasingly concurrent, as the computing power of
modern CPUs is improved mainly by increasing the number of processor cores. At
the same time, modern computer platforms are also increasingly distributed and
heterogenous, often involving special processing units, such as GPUs or DSPs for
performing specific tasks efficiently. Writing software that effectively exploits the
capacity of such platforms is hard. The dataflow paradigm has been proposed as
a possible solution to this problem and has received a large amount of attention
within the signal processing domain. The main advantage of the dataflow paradigm
is that it efficiently exploits parallelism in the implemented program.

A dataflow program consists of a static network of actors. Actors are stateful op-
erators communicating exclusively via asynchronous unidirectional order-preserving
channels that describe the exchange of data between actors. Each actor can execute
concurrently when the required data is available on the incoming channels. As the
only communication between actors is performed over channels, computations can
easily be mapped to different processing units.

In this paper, we present a hierarchical and modular approach to specifica-
tion and automated verification of dataflow actors and networks based on assume-
guarantee reasoning. The approach is based on giving actors and networks speci-
fications in the form of contracts. We present a novel contract notation for actors
and networks. The contracts state functional properties, which the actor or net-
work should adhere to. The goal of the approach is to ensure functional correctness
with respect to contracts for actors and networks as well as deadlock freedom for
networks. Additionally, we have observed that our contracts could be used to im-
prove the performance of scheduling for dataflow networks. Scheduling methods
for dataflow networks [4] are based on finding an execution sequence that returns
the communication buffers to the same state. Our contracts explicitly express this
buffer state as well as preconditions on input data that also can be utilised in
scheduling.

The verification technique is based on encoding the dataflow actors and net-
works in the guarded command language Boogie [2]. There are several advantages
with this approach. The Boogie verifier is tightly integrated with the Z3 [5] SMT
solver and provides much of the infrastructure needed to generate efficient verifica-
tion conditions for this solver. Boogie has also been used as a backend in verifiers
for several popular programming languages. This means that our approach could
potentially be integrated to support dataflow actors implemented in other host
languages for which a translation to Boogie exists.

In this paper we make the following main contributions:

1. A method to specify the behaviour of networks based on the reaction of the
network to individual tokens.

2. An encoding of actors, networks and their specifications into a guarded com-
mand language.

3. A method to generate invariants needed for verification of a common type of
actors.
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Delay	

Add	

actor Add int x1, int x2 =⇒ int y:
action x1:[i], x2:[j] =⇒ y:[i+j] end

end

actor Delay(int k) int x =⇒ int y:
initialize =⇒ y:[k] end
action x:[i] =⇒ y:[i] end

end

Figure 1: Examples of two basic actors and an illustration of a network formed
from these actors.

The work presented acts as a generalisation of previous work [3] by the authors
on verification of Simulink models. There, Simulink models are translated to syn-
chronous dataflow (SDF) [14, 13] networks for verification. SDF is a subset of the
dataflow programs considered here.

The remainder of the paper is structured as follows: We begin by introducing
dataflow actors and networks in Section 2 and then informally describe our veri-
fication technique in Section 3. In Section 4 we describe the actor and assertion
languages. We then describe the encoding of assertions, actors and networks into
a guarded command language in Section 5. In Section 6 we describe our invariant
generation method and discuss the soundness of our approach in Section 7. We
then present results of evaluation of our verification approach on a number of ex-
amples in Section 8 before we proceed to related work and conclusions in Section
9 and Section 10.

2 Dataflow actors and networks

The dataflow programs we consider in this paper consist of static hierarchical
networks of actors, which are connected via asynchronous, unidirectional, order-
preserving channels. The channels are the single mean of communication between
the actors.

An actor A is a stateful operator consisting of a set of inports Aip, a set of
outports Aop, a set of state variables Avar and a set of actions Aact. An actor
performs computations by firing sequences of enabled actions. An action t ∈ Aact

is enabled or disabled based on the amount and value of input tokens, as well as
the actor state. When an action t fires it consumes a fixed amount of tokens on
the inports, produces a static amount of tokens on the outports and updates the
actors state. An action hence describes the reaction of the actor to a sequence
of input tokens. The amount of tokens consumed or produced on a port is called
rate. Actors can be classified as either static or dynamic. An actor is considered
static if every action t ∈ Aact consumes and produces the same amount of tokens.
Otherwise the actor is considered to be dynamic.

We use a language similar to the CAL actor language [6] to describe our actors
and networks. More precisely, our language is a subset of the RVC-CAL [20] lan-
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guage, extended with some specification constructs. RVC-CAL is a subset of CAL
which is part of the Reconfigurable Video Coding standard.

Some basic examples of actors are given in Figure 1. An actor declaration
begins with actor followed by a declaration of inports and outports. The actor
Add has two inports, x1 and x2, and one outport y. The datatype of the ports is
int. The actor has one action with the pattern x1:[i], x2:[j] =⇒ y:[i+j],
which specifies that the action reads 1 token from each inport, binds them to
identifiers i and j, and outputs the sum, i+j, of the read tokens on the outport.
The actor Delay in Figure 1 delays the data on its input channel with one token.
The delay is implemented with a special initialisation action, declared with keyword
initialize, outputting an initial token on the outport. Initialisation actions are
only run once, when the actor is initialised and are not allowed to consume input. In
the example, the value of the initial token is given as a parameter to the actor. The
actors Add and Delay are both considered static, as they consume and produce the
same amount tokens on their ports each time they fire, disregarding initialisation
actions.

Instances of actors are connected to form networks. The graph in Figure 1
illustrates a network consisting of one instance of Add and one instance of Delay,
that calculates the accumulated sum of the input tokens. The goal of this paper
is to specify and verify actors and networks like those given in Figure 1 based
on contracts. We verify functional correctness with respect to contracts as well
as deadlock freedom of actor networks. Note that, for instance, the network in
Figure 1 would deadlock without the initialisation action of the Delay actor.

3 Verification technique

In this section we informally describe our specifications and our verification tech-
nique. The channels of an actor network can be described as streams of data.
A channel c is then a stream 〈c0, c1, . . . 〉, where each ci is a data token. Actors
can then be considered as stateful operators on streams. The specifications are
contracts consisting of preconditions and postconditions for actors and networks.
Networks and actors are modularly verified to conform to their contracts.

3.1 Networks

We describe networks using a syntax which resembles the syntax used to describe
basic actors. This differs from RVC-CAL, which uses a graphical language to
describe networks. The languages are, however, semantically equivalent.

A network declaration begins with the keyword network. A wellformed network
declaration includes an entities block, which declares the actor instances in the
network, and a structure block, which declares the network topology, i.e. how the
actor instances are interconnected. For an example, consider the network SumNet
given in Figure 2, which is the source code of the network illustrated in Figure 1.
The entities block defines the actor instances add and del. In the structure
block, the channels connecting these actor instances are defined. For instance,
that the port in1 of add is connected to the network inport in. The channels are
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network SumNet int in =⇒ int out:
action in:1 =⇒ out:1

requires 0 ≤ in[•]
ensures in[•] ≤ out[•]
ensures out[0] = in[0]
ensures 0 < •(out) ⇒ out[•] = out[•−1]+in[•]

end
invariant tokens(b,1)
chinvariant b[0] = 0
chinvariant 0 ≤ b[•]
entities add = Add(); del = Delay(0); end
structure
a: in −→ add.in1; b: del.out −→ add.in2;
c: add.out −→ out; d: add.out −→ del.in;

end
end

Figure 2: The source code with contract of a network for calculating the accumu-
lated sum of the input tokens.

given labels a, b, c and d. These labels can be used to refer to the channels in
specifications.

In addition to the entities and structure blocks, a network also has sev-
eral specification-oriented constructs. The most central specification construct is
network actions, which define the relationship between input and output tokens of
the network. As for basic actor actions, network actions describe the reaction of
the network to a finite amount of input tokens. However, in contrast to basic actor
actions, network actions are merely used for specification and have no impact on
the behaviour. A network can be given several network actions, defining different
reactions to input tokens.

Definition 1 (Network action). A network action:

action x : n =⇒ y : m requires P ensures Q end

specifies that, given n input tokens on port x conforming to precondition P , the
network outputs m tokens on port y conforming to postcondition Q.

Note that patterns of network actions only specifies the amount of tokes to be
produced or consumed an ports. Input tokens are not assigned to identifiers as for
basic actors. The reason is that it typically is more intuitive to describe network
behaviour in terms of streams and tokens carried in them rather than individual
values.

Our verification technique is based on checking that a network behaves accord-
ing to a network action for a finite window over input and output streams. We
consider a window of size n for the input stream x, and size m for the output
stream y as specified by the network actions. For an example, consider the network
action of our example SumNet. It specifies that given 1 input token on port in,
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it will produce 1 output token on port out. The network action of SumNet also
has a network precondition starting with keyword requires and 3 postconditions
starting with keyword ensures.

Verifying a network entails checking that the network behaves as one of its
network actions for all tokens received. A network action as defined in Definition
1 describes the response of the network to a finite input. To be able to verify
the network for the finite window described by the network action, the network
should have a periodic behaviour where the period corresponds to one execution
of a network action. Additionally, to ensure that the network does not buffer an
infinite amount of tokens on any channel, we require that the amount of tokens on
channels between periods is fixed. If not explicitly stated otherwise, the channels
are required to be empty between network action executions.

It is not always desired or possible to have empty channels between network
action executions. The network SumNet, for instance, contains a loop and requires
that an initial extra token is produced to avoid deadlock. Executing the network
action will then always result in an unread token in this loop. This can be spec-
ified in network invariants. Network invariants are declared using the keyword
invariant and are required to hold between executions of network actions. In
the SumNet example, the invariant tokens(b,1) specifies that the network should
leave 1 token on the channel b between network action executions.

Network invariants are not required to hold during execution of network actions.
To track data during execution of network actions we use another type of invariants,
which we call channel invariants. The intuition is that a channel invariant needs
to hold also during execution of a network action. This means that execution
of any sub-actor, i.e. instance of actor or network in the network that is to be
verified, should preserve the channel invariant. Channel invariants are declared
with the keyword chinvariant. In SumNet example we have a channel invariant
b[0] = 0, stating that the first token produced on channel b has the value 0. We
use indices to refer to stream tokens in assertions. Hence, c[i] refers to the i:th
token produced on channel c.

To write preconditions and postconditions, we want to refer to the tokens pro-
duced and consumed during the network action execution. This can be done using
the function •(c).

Definition 2 (Bullet). •(c) is the number of tokens that had been consumed on the
channel c when the current network action execution started.

Based on the definition of •, it is possible to refer to the first token produced
on a channel c during the current network action execution using c[•] and to the
second token produced using c[• + 1]. It is also possible to refer to the last token
that was produced during the previous execution using c[• − 1]. Note that the
argument to • is left out in the assertions. The argument is implicit when • is used
in the position of an index. Hence, c[•(c)] and c[•] are synonymous.

Consider again the SumNet example. The • function is used in the precondi-
tions and postconditions. The network SumNet has a precondition, 0 ≤ in[•],
which states that the input is required to be non-negative. The postcondition
0 < •(out) ⇒ out[•] = out[•−1]+in[•] states that, for any execution where
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0 < •(out), the network output should be equal to the previous output plus the
current input. The postcondition out[0] = in[0] states that the first token pro-
duced by the network should be equal to the first input consumed. Additionally,
there is also a postcondition stating that the output is always larger than or equal
to the input. It is worth noting that in the invariants above the port names are
used to refer to input and output channels. It would be equivalent to refer to the
channels using the labels a and c given to the channels in the structure block.

We check that a network conforms to its specifications based on an inductive
proof. The base step of the inductive proof is checking that the network initial-
isation establishes the invariants. The inductive step consists in considering an
arbitrary execution of a network action and showing that channels will be returned
to the same state, i.e. that the network invariants are preserved. Our approach
also guarantees deadlock freedom by ensuring that progress is made from the state
described by the network invariants when input specified by the network action is
received.

It should be noted that networks are in practice not executed atomically for a
network action. This means that new input can arrive before the network action
has finished executing. In Section 7 we argue that it despite this is sound to verify
networks for a finite input, given that actors are continuous. This essentially means
that actors should be deterministic.

3.2 Actors

The actors given in Figure 1 are simple static actors without state and their com-
plete behaviour is described by the action patterns. However, actors can have both
state as well as dynamic rates. Consider for instance the actor Sum in Figure 3.
This is a single actor essentially implementing the same functionality as the net-
work in Figure 2. The actor has a state variable sum to store the accumulated sum.
The action has a body, starting with keyword do, which updates the state variable.
Action bodies are described using a simple imperative programming language.

For specification, the action of the actor Sum in Figure 3 has been annotated
with a precondition and a postcondition in the same manner as for network actions
above. These constructs are not part of the CAL language. The precondition
requires the input token to be greater than or equal to 0, while the postcondition
requires the output, i.e. the state variable sum, to be greater than or equal to the
input. To prove that the action satisfies the postcondition, we need to restrict the
state variable with an invariant. The invariant 0 ≤ sum allows the action to be
verified.

Actor invariants are required to hold between action firings and can, with some
restrictions, be used in the place of channel invariants for verification on the network
level. The advantage of this approach is that actor invariants can be locally proved
and it is then not needed to prove them again on the network level. Instead they
can be used directly as assumptions. The requirement on an invariant to be used as
on the network level is that it does not refer to state variables, but only to the actors
interface, i.e. its inports and outports. We refer to such invariants as input/output
invariants, or i/o invariants, as they typically describe the relationship between
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actor Sum int x =⇒ int y:
int sum;
invariant 0 ≤ sum
invariant tot(y) > 0 ⇒ sum = y[last]
invariant tot(y) = rd(x)
invariant ∀ int i · every(y,i,1) ⇒ y[i] = y[i−1]+x[i]
initialize =⇒ do sum := 0; end
action x:[i] =⇒ y:[sum]
requires 0 ≤ i
ensures i ≤ sum
do sum := sum+i;

end
end

actor Split int in =⇒ int pos, int neg:
invariant rd(in) = tot(pos)+tot(neg)
action in:[i] =⇒ pos:[i] guard 0 ≤ i end
action in:[i] =⇒ neg:[i] guard i < 0 end

end

Figure 3: The actor Sum is an actor with state and Split is a data-dependent
actor. The functions rd and tot used in the invariants refer to the amount of
tokens consumed and produced on streams, respectively.

input streams and output streams. The i/o invariants are expressed in a similar
way as invariants on streams for networks, but only include the input and output
streams of the actor or network it describes.

For some examples of i/o invariants, consider again the actor Sum in Fig-
ure 3. In this actor, we have defined the i/o invariants tot(y) = rd(x) and
∀ int i · every(y,i,1) ⇒ y[i] = y[i−1]+x[i]. The remaining two in-
variants refer to the state variable sum and are hence not i/o invariants. In the
invariants, the function tot(y) gives the total number of tokens produced on the
stream connected to port y. The function rd(x) gives the total number of tokens
that has been consumed from the stream connected to port x. Hence, the first
invariant states that the total number of tokens produced on stream y is equal to
the total number of tokens consumed on stream x. In the second invariant, the
data tokens of the input and output streams are referred to using indices. In the
second invariant, every(y,i,1) is a predicate equal to 1 ≤ i < tot(y). The
invariant hence states that every token produced on stream y with an index i of 1
or larger is equal to the previous output plus the input token consumed during the
same firing. The construct y[last] used in one of the invariants refers to the last
token produced on the channel y.

Our verification technique can locally check the i/o invariants and then use
them as assumptions in place of channel invariants on the network level. This is
possible because of the following reasons: Every channel in a network has a single
actor reading and a single actor writing to it. This means that the number of
consumed tokens on an input stream x, rd(x), cannot be changed by any other
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actor. In the same way, the total number of tokens produced on an output stream
y, tot(y), cannot be changed by any other actor. Hence these values will not
change between firings. On the other hand, the number of consumed tokens on
output streams and the number of produced tokens on input streams is not known
locally and hence cannot be used in assertions that are checked locally. The verifier
performs wellformedness checks on assertions to ensure this.

Input/output invariants like those described above can also be provided for
networks, either as network invariants or channel invariants. As for basic actors,
i/o invariants for networks can only refer to the interface, i.e. the inports and
outports of the network, and not to internal channels. Input/output invariants
can be used to modularly check a hierarchy of networks one layer at a time. This
significantly simplifies the verification task, especially when a large network consists
of several instances of the same actor.

The actor Split in Figure 3 is a data-dependent actor. We consider an actor to
be data-dependent if the number of tokens consumed and/or produced is dependent
on the value of the input tokens. The Split actor outputs non-negative input
tokens on the outport named pos and negative input tokens on the outport named
neg. In cases like this it becomes very hard to write invariants on streams like
those in the Sum example, because the number of output tokens depend on the
value of the input tokens. For instance, the total number of tokens produced on
pos is equal to the number of non-negative tokens consumed. To express this as an
invariant, we would need to express an aggregated sum on the consumed tokens.
For actors like this, it is often more feasible to provide the needed properties as
channel invariants on the network level instead.

It should be emphasised that invariants on streams like those described above
are also needed for the simple actors in Figure 1. However, in these cases the
verification tool can automatically infer the invariants, as we describe in Section 6.

Our actor language allows describing actors that are non-deterministic. Con-
sider for instance changing the guard expression of the second action of Split to
i ≤ 0. An input token with value 0 would then enable both actions and the choice
of which action to fire would be non-deterministic. The amount of produced tokens
on the output channels would then also be non-deterministic. As we discuss in Sec-
tion 7, our verification technique is not sound for non-deterministic actors. Because
of this we perform wellformedness checks on actors to ensure that firing rules are
mutually exclusive. This ensures that for any two action t1 and t2 of an actor, t1
cannot be enabled by the same input sequence as t2 or a prefix of that sequence.
This wellformedness requirement applies to both basic actors and networks.

4 Programming and assertion language

In this section we define precisely the language we consider in this paper. The
language can be split into two parts: the actor language, which is used to describe
actors, networks and their interconnection, and the host language, which is used
to implement actor action bodies. The host language we consider is a simple
imperative programming language. We also define our assertion language, which is

8



Prog ::= (ActorDecl |NwDecl)∗

ActorDecl ::= actor id〈type id〉 PortDecl ActorMem∗ end
NwDecl ::= network id〈type id〉 PortDecl NwMem∗ end
PortDecl ::= type id =⇒ type id
ActorMem ::= ConstDecl |VarDecl |ActorInv |Action | Schedule | Priority
NwMem ::= ActorInv | ChInv |Action | Entities | Structure
Action ::= id : (action | initialize) Pattern ActSpec ActBody end
Entities ::= entities (id = id〈e〉; )∗ end
Structure ::= structure (id(.id)? −→ id(.id)?; )∗ end
ActorInv ::= invariant A
ChInv ::= chinvariant A
ActSpec ::= (requires A | ensures A)∗

ActBody ::= (guard e)? (do S )?

Pattern ::= InPat =⇒ OutPat

InPat ::= id : [id]
OutPat ::= id : [e]
VarDecl ::= type id

Figure 4: Grammar of the actor language.

used to express preconditions, postconditions and invariants.

Actor language The grammar of the complete actor language is listed in Fig-
ure 4. In the grammar we use 〈 and 〉 for concrete parentheses to differentiate
them from the meta-parentheses. A program consists of a set of actor and network
declarations. In the grammar S is the statement language of the host language, A
is an assertion, e is an expression in the host language and id is an identifier.

Host language The host language we consider in this paper is a simple imper-
ative programming language without reference types, which is straight-forward to
encode in a verifier. The statement grammar S of the language is given in Figure 5.
Essentially, the language is a small subset of the RVC-CAL host language. The
language consists of assignments, if statements and while loops. While loops are
verified using Hoare logic as in traditional program verification. The expression
language grammar e is also given in Figure 5. This language is also a subset of the
RVC-CAL expression language, but has been extended with some constructs, such
as quantifiers, which are needed to write specifications. The host language could
easily be extended or substituted with another language which can be encoded in
a verifier.

Assertion language The grammar of the assertion language A is given in Fig-
ure 5. The grammar is defined in such a way that the predicate tokens is only
allowed as an independent assertion. The reason is that the verifier needs to keep
track of for which channels tokens has been used, because channels which are not
mentioned in any tokens predicate are required to be empty between network ac-
tion executions. For the soundness of our approach we also require that tokens
is not used on network input streams. Requiring that tokens is only used as an
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S ::=
id := e | Assignment
if exp then S1 else S2 end | If-Else
while e (invariant A)∗ do S end While

A ::= A1 ∧A2 | tokens(id , e) | e
e ::=

e1 (+ | − | ∗ | / |%) e2 | Binary expression
e1 (∧ | ∨ | ⇒ | ⇐⇒) e2 | Binary predicate
e1 (= | 6= | < | > | ≤ | ≥) e2 | Relational expression
¬e | Negation
−e | Unary minus
(∀ | ∃) type id · e | Quantifier
if e1 then e2 else e3 end | Conditional expression
id〈e〉 | Function call
e[e] | Accessor
id | Identifier
n | Numeric literal
true | false Boolean literal

Figure 5: The statement grammar S of the host language, the assertion language
grammar A and the expression grammar e.

independent assertion means that it will always be required to hold, as it cannot
appear in conditions like, e.g., e ⇒ tokens(x, 1). In the verifier Chalice [16, 18]
they have solved a similar problem by transferring permissions to receive and obli-
gations to send messages as part of assertions. They realise this using a concept
of inhaling and exhaling assertions. A similar approach could be used here also,
but seems more complex than necessary. We do not have send obligations as the
number of tokens to be produced is given statically in actions. Expressions e used
in assertions are equivalent to expressions of the host language, but can contain the
specification constructs •(c), rd(c), tot(c) etc., which are not allowed in standard
expressions used e.g. in actor bodies.

5 Encoding

In this section we explain how the assertions, as well as the proof rules for networks
and actors, can be encoded in a guarded command language similar to Boogie
[2]. The Boogie verifier carries out the rest of the proof by computing weakest
preconditions of the generated code and proving them using an SMT solver.

5.1 Assertions

Our encoding is based on tracking content of network channels. We do this via a
number of global map variables:

I : ch→ int R : ch→ int C : ch→ int M : (ch〈β〉, int)→ β
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T•(c)U = I[c]
Trd(c)U = R[c]
Ttot(c)U = C[c]
Trd•(c)U = R[c]− I[c]
Ttot•(c)U = C[c]− I[c]
Turd(c)U = C[c]−R[c]
Tnext(c)U = R[c]

Tprev(c)U = R[c]− 1
Tlast(c)U = C[c]− 1
Tc[e]U = M[c,TeU]
Ttokens(c, e)U = C[c]−R[c] = TeU
Thistory(c, e)U = 0 ≤ TeU ∧ TeU < I[c]
Tcurrent(c, e)U = I[c] ≤ TeU ∧ TeU < C[c]
Tevery(c, e)U = 0 ≤ TeU ∧ TeU < C[c]

Figure 6: Encoding of assertion constructs.

The type of I, R and C is a map from channels to integers. I[c] tracks the number
of tokens read on channel c when the network action started executing. R[c] tracks
the total number of tokens read on channel c. C[c] tracks the number of tokens that
has been produced on c. M is a two-dimensional map of type (ch〈β〉, int)→ β. It
is used to track the messages sent on channels. M[c, i] gives the i:th token produced
on channel c. Note that the type ofM is polymorphic and β is the datatype of the
messages carried on the channel.

The assertion encoding, denoted with T_U, of the most significant constructs
of our assertion language are given in Figure 6. The functions •(c), rd(c) and
tot(c) correspond directly to I[c],R[c] and C[c], respectively. The functions rd•(c),
tot•(c) and urd(c) are defined as differences between the values of I[c], R[c] and
C[c]. The standard logical operators, and other constructs of the expression lan-
guage e in Figure 5, have direct correspondences in the target language and are not
listed here.

5.2 Basic actors

For a basic actor A, we verify that (1) the output of each actor action T ∈ Aact

fullfils its postcondition and (2) that each actor action preserves the actor invariants
Ainv. Additionally, we also verify that the actor initialisation establishes Ainv. The
complete encodings, Action for verifying normal actor actions and Init for verifying
actor initialisation, are listed in Figure 7. It is worth noting that the verification
technique used is analogous to how methods are verified in traditional program
verification for object-oriented languages.

The encoding Action, to verify an action T is as follows: We assume that
Ainv hold when the execution of T starts and that the input tokens satisfy the
precondition Tpre. We also assume that the action guard Tgrd is satisfied, as T
would not fire if Tgrd is not satisfied.

In the encoding Initialisation we show that Ainv is established after executing
a possible initialisation action. This verification is similar to normal actions, but
we do not initially assume the invariants. Instead we check that the output of the
initialisation action I satisfies its postcondition Ipost and that I establishes Ainv if
executed from a state where no input tokens have been consumed and no output
tokens produced.
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Init(A, I) =
assume 0 = R[x] ∧ 0 = C[y];
TIbodyU;
assert TIpostU;
foreach e ∈ em {
M[y, C[y]] := TeU;
C[y] := C[y] + 1;
}
assert TAinvU;

Action(A, T ) =
assume 0 ≤ R[x] ∧ 0 ≤ C[y];
assume TAinvU;
foreach k ∈ in {
k :=M[x,R[x]];
R[x] := R[x] + 1;
}
assume TTgrdU ∧ TTpreU;
TTbodyU;
assert TTpostU;
foreach e ∈ em {
M[y, C[y]] := TeU;
C[y] := C[y] + 1;
}
assert TAinvU;

Figure 7: Encoding for verification of basic actors.

5.3 Networks

The goal of the network encoding is to check for each network action that the
network behaves according to the network action specification. The verification
method is based on checking an arbitrary execution of the network action. The
verification relies on tracing data on channels using invariants. Network invari-
ants are required to hold between network action executions. Channel invariants
should additionally hold during network action executions, i.e. executing a sub-
actor should preserve the channel invariants.

The encoding for verifying networks is split into several parts. These parts are
listed in Figure 8 and explained below. In the encoding and below, N is a network,
x ∈ Nip is an inport of N and y ∈ Nop is an outport of N . Ninst and Nch are
the actor instances of the network and network channels, respectively. Then Nnwi

and Nchi are the network invariants and channel invariants, respectively. It should
be emphasised that, in addition to user provided network invariants, Nnwi also
includes a tokens assertion for each channel c ∈ Nch in the network. If there is no
explicit tokens assertion for a channel c provided by the user, the verifier adds an
implicit tokens(c, 0) assertion. Nsubi is the i/o invariants of the sub-actors, which
have been proven locally and can be used as assumptions here. Nfrules is the firing
rules of every sub-actor in the network. We further assume that T is the network
action for which we want to verify N and that T has the pattern x : n =⇒ y : m,
precondition Tpre and postcondition Tpost.

The network encoding consists of the following parts:

• Initialisation We check that the network initialisation establishes Nnwi ∪Nchi.
This is done by assuming that we start from a state with empty channel
histories. We then update the buffers according to the initialisation actions
of every sub-actor, assume the sub-invariants Nsubi, and assert Nchi ∪Nnwi.
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Initialisation(N) =
foreach c ∈ Nch

{ assume I[c] = 0 ∧R[c] = 0 ∧ C[c] = 0; }
foreach a ∈ Nact { Init(a) }
assume TNsubiU;
assert TNchiU ∧ TNnwiU;
foreach f ∈ Nfrules { assert ¬TfU; }

Input(N,T ) =
assume TNsubiU ∧ TNchiU ∧ C[x]− I[x] < n;
C[x] := C[x] + 1;
assume TTpreU;
assert TNchiU;

Output(N,T ) =
assume TNsubiU ∧ TNchiU ∧ C[x]− I[x] = n;
assume TTpreU;
foreach f ∈ Nfrules { assume ¬TfU; }
assert TTpostU;
R[y] := R[y] +m;
I := R;
assert TNchiU ∧ TNnwiU;

Compatibility(N,A, t) =
assume TNsubiU ∧ TNchiU;
assume nt ≤ C[xt]−R[xt];
foreach k ∈ int {
k :=M[x,R[xt]];
R[xt] := R[xt] + 1;
}
assume TtgrdU;
assert TtpreU;
havoc Avar ;
assume TtpostU;
foreach e ∈ emt {
M[yt, C[yt]] := TeU;
C[yt] := C[yt] + 1;
}
assume TAinvU;
assert TNchiU;

Figure 8: Encoding for verification of networks.

Finally, we also assert that no sub-actor action is enabled from the initial
network state, i.e. that each f ∈ Nfrules is falsified. This ensures that the
state is stable in the sense that N cannot make progress from this state
without receiving additional input. The encoding Init(a) stands for executing
the initialisation of the sub-actor a. Essentially, this includes updating the
output channels of the network to contain possible tokens specified by a’s
initialisation action and assuming a’s i/o invariants.

• Compatibility We check that the inter-connected sub-actors are compatible,
i.e. that the invariants implies the preconditions of each sub-actor action, and
that executing any sub-actor preserves Nchi . A separate Compatibility proof
obligation is generated for each action of every sub-actor. The encoding is
as follows for a sub-actor A and action t with pattern xt : [int ] =⇒ yt : [e

mt ].
The invariants Nchi ∪Nsubi are assumed. It is then assumed that there are at
least nt tokens on the input channel xt, nt ≤ C[xt]−R[xt]. The input tokens
are then assigned to identifiers and the action guard tgrd is assumed. We then
assert the precondition tpre. After this we havoc (non-deterministically assign
any type correct value) to the sub-actor state variables. This is done because
executing t can change the value of the state variables. We then assume the
sub-action postcondition tpost and assign the tokens defined in the output
pattern to the output channel y. After this we assume the invariants of the
sub-actor, Ainv , and assert that Nchi is preserved. It should be noted that
references to inports and outports of the sub-actor, i.e. xt and yt, are renamed
to refer to the corresponding channels of N .
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• Input We check that Nchi is preserved when new network input conforming
to Tpre is received on inport x. This is done by incrementing the value of
C[x]. As we consider a finite window, an assumption, C[x] − I[x] < n, that
the amount of input tokens received so far is less than that specified in the
action pattern is made.

• Output We check that correct network output has been produced and that the
network is returned to a state conforming to Nnwi if the following conditions
hold: (1) On the input x, n tokens satisfying Tpre has been received. (2)
No sub-actor can be fired, i.e., each f ∈ Nfrules is falsified. (3) All sub-actor
actions preserve Nchi , as checked in Compatibility. The encoding is as follows.
We assert that these assumptions imply that m tokens satisfying Tpost has
been produced on output y. We then mark the output tokens as read by
updating R[y] and assign I values of R. This models that the network
action execution is completed. Note that this is the only update of I in the
encoding and that it ensures that it contains the number of read tokens after
the network action execution. Finally, we assert Nchi ∪Nnwi and check that
we have the correct amount of tokens on each channel in the same way as in
the Initialisation case.

It is worth noting the similarity between our encoding of networks and how
loops are verified using classical Hoare logic. In fact, our network encoding could be
expressed as a loop, with the loop body consisting of a nondeterministic branch for
each Compatibility check. The channel invariants would then be the loop invariants.

6 Invariant generation

To decrease the number of invariants that must be provided by the user, we aim to
automatically generate actor invariants when possible. In this section we present a
general method for generating invariants for all stateless static actors. However, this
method can also be applied to stateful actors, if the state variables are transformed
to feedback loops for the actor.

For an example of the invariants we aim to generate, consider the actor Add in
Figure 1. We want to find invariants expressing the relation between input tokens
and output tokens for this actor. The following invariants fullfil this:

tot(out) = rd(in1 ) ∧ tot(out) = rd(in2 )

∀ int j · 0 ≤ j < tot(out)⇒ out [j] = in1 [j] + in2 [j]

To see how generation of invariants like above can be automated and generalised
to consider any stateless static actor, consider an actor A with the following two
actions:

initialize =⇒ y : [dr] end

action x : [in] =⇒ y : [em] guard g end

Here in is a sequence of n input variables and em and dr are sequences of m
respectively r functions. Hence A has an input rate n and an output rate m.
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Additionally it produces r initial tokens. The initialize action is only run once
when the actor is initialised. We can now relate the number of tokens on the inport
to the number of tokens on the outport with the following invariant:

(n tot(y)) = (m rd(x)) + r (1)

We can also express the relation between values of tokens on the output streams
and values of tokens on the input streams using invariants. Such invariants take
the following form:

∀ int j · R ∧ G⇒ y[j] = F(k) (2)

where
R = r ≤ j < tot(y) ∧ j %m = k
F = ek(i0 7→ x[b(0)], . . . , in 7→ x[b(n)])
G = g(i0 7→ x[b(0)], . . . , in 7→ x[b(n)])
b(i) =̂ (n/m)j + i− r

Here the notation x 7→ y stands for substituting x with y in the expression. A
separate invariant with the format in (2) is generated for each k ∈ 0..m−1. Hence,
k is an integer literal and not bound in the quantifier. It should also be noted
that separate invariants are needed for each outport. Hence, the total amount of
invariants of the format in (2) generated for an actor with p outports and action
with m output tokens is p×m. Additionally, the generation is repeated separately
for each action.

Invariants generated according to (1) and (2) can be checked locally, by checking
that the actor actions preserve the invariants. However, to verify networks it is often
also useful to state properties about the initial amount of tokens on channels. For
the static actor A we can provide the following invariant:

(n •(y)) = (m •(x)) (3)

However, the value of function • is not defined on the actor level. Consequently,
invariants involving • cannot be proven locally. Instead, invariants of the form in
(3) are provided as channel invariants for the network where an instance of A is
used.

Using invariants in the form described by (1), (2) and (3), it is possible to
verify rate-static actors and networks of rate-static actors such as Add and Delay
in Figure 1 without any user-provided invariants. However, network invariants still
have to be provided to describe the state between network action executions.

7 Soundness

In this section we provide an informal argument for the soundness of our approach.
We give our actors and actor networks semantics based Kahn Process Networks
(KPN) [11]. We then show that it is sound to verify networks for a finite input
sequence and that our approach guarantees deadlock freedom for networks.

Our actors and actor networks can be considered to be Dataflow Process Net-
works (DPN) [15]. Lee and Parks [15] has shown that DPNs can be mapped to
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KPNs. In a KPN, computation is performed by a set of independent processes,
which communicate through FIFO channels. A KPN process with n inputs and m
outputs is defined as a function F : Sn → Sm mapping potentially infinite input
sequences to output sequences. Here Si denotes the set of i-tuples of sequences.
KPN processes are required to be continuous in the sense reviewed below. Con-
sider an order relation x v x′, where x and x′, meaning that x is a prefix of x′.
Now consider a chain w of sequences, where each sequence is comparable using
v. Let tw denote the least upper bound for w. A process F is continuous if for
every such chain, tF (w) exists and F (tw) = tF (w) Every continuous process is
also monotonic, which means that x v x′ ⇒ F (x) v F (x′). Additionally it has
also been proven that a network of monotonic processes itself forms a monotonic
process [15].

Dataflow process networks are a special case of KPN [15]. A dataflow node
can be considered as a pair {f,R}, where f : Sn → Sm is the firing function and
R ⊂ Sn is the firing rules, expressed as finite sequences. We can then define a
Kahn process F based on {f,R} as follows, where s.s′ denotes the concatenation
of the sequences s and s′:

F (x) =

{
f(r).F (x′) if there exists an r ∈ R such that x = r.x′

⊥ otherwise

Theorem 1. Actors are continuous and monotone, given that the firing rules are
mutually exclusive.

Proof. Lee and Parks [15] have shown that sufficient conditions for dataflow process,
which is also what our actors are, to be continuous are that each actor is functional
and that the firing rules are sequential. Functional here means that the actor does
not have side effects and that the output tokens are a function of the input tokens
consumed during that firing. Sequential means that the firing rules can be tested
in a predefined order using only blocking reads. As we here allow actors with state
they do not appear to be functional. However, Lee and Parks [15] note that actor
state is just syntactic sugar for having feedback loops in the top-level network.
The same conditions hence apply also to actors with state. The condition that
firing rules are sequential is ensured by requiring that firing rules are mutually
exclusive.

Our verification approach is based on an inductive argument. Given a network
N with a network invariant Nnwi, we show that Nnwi holds again after an arbitrary
execution of the network action T . The inductive base step consists in checking
that Nnwi is established by the network initialisation. We hence verify the network
for a finite input sequence of length n described by the network action. This is
sound for a network of monotone actors.

Theorem 2. Our verification approach, using a finite input sequence, is sound for
a network of monotone actors.

Proof. To be able to verify a network N for a finite input sequence, it is required
that the prefix of the output sequence does note change in response to receiving
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additional input. More formally, we require that N(x) v N(x′) for two input
sequences x and x′ where x v x′. This is exactly the definition of monotonicity.

Our verification technique guarantees that verified networks are deadlock free.
A deadlock occurs in a network if no actor in the network is able to fire.

Definition 3 (Deadlock). A deadlock for a network N is a state where ∀f ∈
Nfrules · ¬f

According to this definition, the state described by Nnwi can be a deadlock
state. In fact, this is desired as N should not make progress from this state without
receiving additional input. The deadlock should, however, be resolved at the latest
when the amount of input specified in the network action(s) is received. It is
possible that a deadlock could be resolved by receiving more than n tokens. Hence,
the verification is more strict than necessary.

In our encoding, deadlock freedom is checked in the proof obligation Output
by checking the property Nchi ∧ C[x] − I[x] = n ∧ Tpre ∧ (∀f ∈ Nfrules · ¬f) ⇒
Nnwi, assuming that we only have one input port x for simplicity. More intuitively
this property states that if N is in a deadlock state and behaves according to its
specfication, meaning here that the channel invariants and preconditions hold, we
are always in a state satisfying Nnwi. A network N is then deadlock free if it
makes progress from a state satisfying Nnwi when receiving n input tokens. We
now provide a proof that this is the case.

Theorem 3. A network N with input pattern x : n is deadlock free if Nchi ∧C[x]−
I[x] = n ∧ Tpre ∧ (∀f ∈ Nfrules · ¬f)⇒ Nnwi.

Proof. When a network action execution starts we have R[x] − I[x] = 0 for the
input channel x. We assume C[x] − I[x] = n, i.e. that all input tokens specified
has been received, when the execution is finished. Nnwi requires C[x] − R[x] = 0,
i.e. that all tokens have been consumed on x. Consequently, the value of R[x]
must have been increased by n during the execution of N . The only possibility to
increase the value of R[x] is by firing the sub-actor connected to x. To prove Nnwi,
the channel invariants Nchi then have to ensure that progress has been made from
the initial state and that no sub-actor deadlocks.

Note that if a sub-actor would deadlock on the input received we would not be
able to prove Nnwi, as it contains a property C[c] − R[c] = kc for every channel.
However, our verification approach allows a part of a network to be inactive in
the sense that no tokens are ever read from some channels. It is also possible to
construct a network which would never reach a state satisfying ∀f ∈ Nfrules · ¬f .
Such a network could be seen as being in a livelock state. Proving the absence of
livelocks would be analogous to proving termination of loops. We expect livelocks
to be rare in practice and have chosen to not handle them in our approach.
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Table 1: Summary of evaluation
User Gen.

Name LOC Instances Invs. Invs. Assertions Boogie LOC
SumNet 41 2 3 15 74 622
DataDependent 49 2 7 4 70 604
Nested 107 6 16 18 151 1,190
IIR 52 6 1 21 118 1,327
FIR 80 13 5 27 326 4,609
LMS 198 45 9 110 3,789 47,898

8 Evaluation

We have implemented our verification approach in a prototype verification tool1 to
evaluate the usability in practice. We have successfully verified a number of existing
networks and actors with both static an dynamic behaviour. The verified networks
include, e.g., implementations of digital filters. The largest verified network consists
of over 40 actors. Many of the examples consisted mostly of static actors for which
our tool automatically generates invariants. In these cases, most of user-provided
invariants were used to specify tokens on feedback loops.

The results of evaluation of 6 different networks are summarised in Table 1.
The table lists the lines of code, the number of actor instances, the number of
user-provided invariants needed, the number of invariants generated by the tool,
the number of assertions in the resulting Boogie encoding, and the total number of
lines of the Boogie encoding.

In Table 1, the network SumNet is the network listed in Figure 2. The network
DataDependent is a network consisting of the data-dependent actor Split listed
in Figure 3 and a static actor. Since the verifier cannot generate invariants for
Split several user-provided invariants are needed to verify the network. The net-
work Nested is a network nesting another network. The top-lelvel network nests
the network SumNet and also contains the actor Sum given in Figure 3. The post-
conditions asserts that the network SumNet and the actor Sum produces equivalent
output streams.

The networks IIR, FIR and LMS describe digital filters and are based on net-
works available as part of the Orcc2 compiler infrastructure for RVC-CAL programs.
All of these networks are essentially SDF networks, except that some of the actors
have state. In the IIR and FIR examples the postconditions check that the out-
put produced conforms to the difference equations describing the filters. For the
LMS filter we only checked that the network produces one output token for each
input token and that the network is returned to the state described by the network
invariant.

In conclusion it can be observed in Table 1 that the number of assertions in the
Boogie code is in many cases roughly proportional to the number of actor instances
multiplied by the number of invariants. This is expected as channel invariants are
asserted for each action of every sub-actor. Proving actor invariants locally instead

1http://users.abo.fi/jonwiik/actortool/
2http://orcc.sourceforge.net/
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of expressing them as channel invariants on the network level decreases the number
of assertions. Decomposing networks into a hierarchies of smaller networks also
decreases the number of assertions. All of the evaluated networks, except LMS,
were verified within 5 seconds on a modern laptop. The LMS example took roughly
40 seconds to verify.

9 Related work

Chalice [16, 17] is a programming language and verifier for multi-threaded object-
based programs. Chalice also supports channels [18] that can be verified to be
deadlock free. There, permissions to receive and obligations to send messages on
channels are described in assertions. We have opted to not use this method here
since it is more complex than needed in our case. We do not have send obligations
as the number of tokens to be produced is given statically in actions. It could,
however, be investigated as a method to support more dynamic networks. As our
tool, Chalice uses Boogie [2] as a backend for verification.

A classification method for dataflow actors using satisfiability and abstract in-
terpretation has been developed by Wipliez and Raulet [23]. They also use the
SMT solver Z3 [5] as a backend. They detect a class of actors, which they call
time-dependent. A time-dependent actor can react to the absence of tokens on
a channel. Their method is similar to our check of mutual exclusiveness of firing
rules. However, the focus of their work is on classifying actors in order to improve
compile-time scheduling and not on proving functional properties.

In [4] merging of actors into composite actors is discussed. The actions of
the resulting composite actor are similar to our network action, but they try to
automatically determine this action, which is not always possible. The purpose of
the actor merging is to decrease the number of needed runtime scheduling decisions.
They do not consider functional correctness with respect to contracts. We plan to
investigate integration of our contracts with this approach as future work.

Some automata-based approaches to static analysis of dataflow networks ex-
ist. In [9] a method for modular analysis of Dataflow Process Networks based
on Interface Automata is presented. Interface Automata are associated with pro-
cesses to specify the interface behaviour and environmental assumptions. Based
on the automata they deduce properties such as deadlock freedom by checking
the consistency of components and interface automaton networks. An extension
to Interface Automata, named Counting Interface Automata, is presented in [22]
and used for checking CAL actor compatibility. The method can capture temporal
and quantitative aspects of an actors interface, as well as the token exchange rate.
By composing automata they can prove behavioural type compatibility. However,
neither of the approaches [9, 22] consider properties given in contracts.

There is a large amount of work, e.g. [1, 10, 12], on verification of asynchronous
object programs. Asynchronous objects are similar to our actors, but there are
several differences. We consider static networks of actors, while asynchronous ob-
jects can be dynamically created. Restricting ourselves to static networks simplifies
reasoning and enables us to prove stronger properties fully automatically.
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Formal verification of synchronous languages such as Simulink and Lustre has
been studied extensively. An approach [7, 8] to verification of safety properties
based on k-induction in Lustre has been developed by Hagen and Tinelli and also
implemented in a tool. A contract format for Lustre is presented by Maraninchi
and Morel [19]. An approach [21] to verification of Simulink models based on
a translation to Boogie has also been developed. However, all of the above men-
tioned approaches are aimed at synchronous languages and do not support dynamic
dataflow actors. Moreover, we allow verification of user-defined actors expressed in
an imperative programming language. This is also possible in Simulink through an
integration with MATLAB, but the verification approaches above do not handle
such blocks. This paper acts as an extension to an approach [3] to contract-based
verification of Simulink models. There, Simulink models are first translated to
a functionally equivalent SDF representation. Trough this translation, Simulink
models could also be handled using the approach presented in this paper.

10 Conclusion

In this paper we have presented an approach to specification and automated veri-
fication of dynamic dataflow networks. Our actors and networks are described in
programming language similar to the RVC-CAL language, which has been stan-
dardised as part of the Reconfigurable Video Coding standard. Our verification
approach ensures functional correctness with respect to contracts for actors and
networks as well as deadlock freedom for networks. We have also observed that our
contracts could be useful in scheduling of dataflow networks. The verification ap-
proach is based on checking the network for an arbitrary execution of finite length.
Verification is carried out by encoding the dataflow networks and specifications in
the guarded command language Boogie. The Boogie verifier then carries out the
rest of the proof by computing weakest preconditions and submitting them to an
SMT solver. We have also implemented our approach in a prototype verification
tool and successfully verified a number of existing networks.

There are several directions for future work. We plan to investigate more ex-
tensively the utilisation of our contracts in scheduling of dataflow networks, e.g. by
integrating them with the approach in [4]. We also plan to investigate extension
of our approach to consider networks where actors can be dynamically created.
However, we believe that our approach is a good first step towards fully automatic
verification of dataflow actor networks.
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