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Abstract

Most of the methods for multiobjective optimization utilize some scalarization
technique where several goals of the original multiobjective problem are converted
to one single-objective problem. One common scalarizationtechnique is a use
of achievement scalarizing functions. In this paper, we introduce a new family
of two-slope parameterized achievement scalarizing functions for multiobjective
optimization. With these two-slope parameterized ASFs we can guarantee the
(weak) Pareto optimality of the solutions produced and every (weakly) Pareto
optimal solution can be obtained. Parameterization of thiskind gives a systematic
way to produce different solutions from the same preferenceinformation. With
two weighting vectors depending on the achievability of thereference point there
is no need for any assumptions about the reference point. In addition to theory,
we give the graphical illustrations of two-slope parameterized ASFs and analyze
the quality of the solutions produced in convex and nonconvex testproblems.

Keywords: Multiobjective optimization, achievement scalarizing functions,
Pareto optimal solutions
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1 Introduction

In many applications, the aim is to optimize several objectives and to find a solu-
tion which is as good as possible for every objective at the same time. Usually,
these objectives are conflicting and due to that it is not possible to find a solution
being optimal for every objective simultaneously. That is why compromises be-
tween these conflicting objectives are needed. The compromise is optimal if any
objective cannot be improved without impairing at least oneof the other objec-
tives. The problem of this kind is called a multiobjective optimization problem
and its optimal solution is called a Pareto optimal solution.

Usually there are several mathematically equally good Pareto optimal solu-
tions and someone needs to choose the best solution for a particular problem.
This person is called a decision maker who has an insight intothe problem. It
is also possible to obtain some additional information of the problem from the
decision maker.

As it was said, the problem setting of multiobjective optimization problem dif-
fers a lot from the single-objective optimization and by solving only one objective
of the multiobjective optimization problem with a single-objective method can
lead to an arbitrary bad solution with respect to other objectives for the original
multiobjective problem. Thus different methods in order tosolve multiobjective
problems are needed. Several methods are described in [1, 7,13] and references
therein. Most of the methods for multiobjective optimization utilize scalarization.
In scalarization at first several goals of the original multiobjective problem are
converted to one single-objective problem and then appliedsome suitable single-
objective method. Several scalarization techniques are introduced and compared
in [8].

One of the most common scalarization technique is a use of achievement
scalarizing functions [7, 14, 15]. In this approach, a reference point is, for in-
stance, asked from the decision maker and after that an achievement scalarizing
function is optimized in order to find a solution being the closest to the reference
point.

Chebyshev type achievement scalarizing function [14] is one of the most pop-
ular achievement scalarizing functions. If the reference point is unachievable, the
distance from the reference point to the feasible region is minimized. In graphical
illustration in Figure 1a right-angled contours are increasing from the unachiev-
able reference point towards the feasible region. The optimal solution is the first
point from the feasible region touching the contour. On the other hand, if the ref-
erence point is achievable, the maximum value of the negative difference between
the reference point and the nondominated set (i.e. the set ofPareto optimal solu-
tions in objective space) is minimized. In graphical illustration in Figure 1b the
optimal solution for scalarizied problem is the nondominated point touching the
contour last.

The wide usage of Chebyshev type achievement scalarizing function is due to
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(a) Unachievable reference point (b) Achievable reference point

Figure 1: Graphical illustration of Chebyshev type achievement scalarizing func-
tion

its good mathematical properties. With thisL∞ metric any weakly Pareto optimal
solution can be obtained. Also other type of metrics can be used, for example
linearL1 metric but unlike Chebyshev metric withL1 metric not every weakly
Pareto optimal solution are necessarily obtained in nonconvex case since there
might exist nonsupported solutions. To overcome this drawback in [12] there is
presentedL1 based metric ensuring that every weakly Pareto optimal solution can
be obtained.

In this paper, we propose a new family of two-slope parameterized achieve-
ment scalarizing functions (TSPASF). These functions baseon the parameterized
achievement scalarizing functions (PASF) introduced in [11]. By using parame-
terization metrics varying from Chebyshev metric to linearmetric are possible to
utilize. We generalize the PASF by utilizing the idea of two different weighting
vectors depending on the achievability of the reference point described in [3]. The
advantage of this new TSPASF is that any Pareto optimal solution can be found
by moving the reference point or changing the weighting vectors. Another advan-
tage compared with PASF is that we need neither to assume anything about the
reference point nor to test whether the reference point is achievable or not. This
occurs since the formulation of the problem guarantees thatthe right weighting
vector is used in every case.

This paper is organized as follows: In Section 2 we recall some basic results
of multiobjective optimization and describe the ideas of achievement scalarizing
functions and parameterized achievement scalarizing functions. Section 3 is ded-
icated to a new two-slope parameterized achievement function and a special case
of three objectives is analyzed in Section 4. In Section 5, wegive some numerical
examples and in Section 6 some final remarks.
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2 Preliminaries

We consider a multiobjective optimization problem where all the objectives are
minimized simultaneously. This problem is of the form

min f(x) = (f1(x), . . . , fm(x)) (1)

s. t. x ∈ X,

where the partial objective functions are definedfi : X → R, i ∈ Nm =
{1, . . . , m} and they are assumed to be lower semicontinuous. A setX ⊂ R

n

is a non-empty compact set of feasible solutions. The image of this setX is called
a feasible objective regionZ = f(X). The objective functions are also assumed
to be conflicting and thus it is impossible to have a solution being minimal for
every objective function.

We recall some basic results from multiobjective optimization. For more de-
tails we refer to [1, 7]. In the following we use notationx < y if xi < yi for all
i ∈ Nn and notationx ≤ y if xi ≤ yi for all i ∈ Nn.

An optimal solution of problem (1) is called Pareto optimal if any objective
cannot be improved without deteriorating some other objective at the same time.
Formally we can define that a solutionx∗ ∈ R

n of the problem (1) isPareto
optimal if there does not exist another pointx ∈ R

n such thatfi(x) ≤ fi(x
∗)

for all i ∈ Nm andfj(x) < fj(x
∗) for at least one indexj ∈ Nm. Under the

assumptions of problem (1), Pareto optimal solutions exist[13]. Usually, there
exist several mathematically equally good Pareto optimal solutions and a set of
these Pareto optimal solutions is called thePareto set.

We can also define a generalized concept where a solutionx∗ ∈ R
n is called

weakly Pareto optimalif there does not exist another pointx ∈ R
n such that

fi(x) < fi(x
∗) for all i ∈ Nm. In this case there exists no other solution such that

all objectives have a better value. Note that the set of Pareto optimal solutions is
a subset of the set of weakly Pareto optimal solutions.

To get some information about Pareto optimal solutions an ideal and a nadir
vector,f I andfN , can be calculated giving a lower and an upper bound for the
range of Pareto optimal solutions, respectively. The components of theideal vec-
tor are obtained by minimizing every objective separately. Thus thei:th compo-
nent of the ideal vector can be defined by solving the problemminx∈X fi(x). The
ideal vector tells how good solutions can be found but normally ideal vector is not
a feasible solution. If the ideal vector is a feasible solution, then it would clearly
be also an optimal solution of problem (1).

The nadir vectorrelates the upper bound for Pareto optimal solutions repre-
senting the worst solution. The components of the nadir vector can be calculated
by maximizing objectives over the set of Pareto optimal solutions. Due to this
optimization over the Pareto set it is usually difficult to obtain the nadir vector but
it can be approximated for example with the pay-off matrix [1, 7].
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A utopian vectorgives the strictly better solution than any of the Pareto opti-
mal solution and even better than the ideal vector. The components of the utopian
vector are of the formfU

i = f I
i − εi whereεi > 0 is a sufficient small constant.

A point which consists of desirable values for objective functions is called a
reference pointfR = (fR

i , . . . , f
R
m). These desirable values have been provided by

the decision maker who tells what (s)he wishes to achieve. The reference point is
said to beachievableif fR ∈ Z+R

m
+ whereRm

+ = {y ∈ R
m | yi ≥ 0 for i ∈ Nm}.

Otherwise the reference point is said to beunachievable.
In this paper, we are focusing on achievement scalarizing functions (ASF)

[14, 15] in order to scalarize multiobjective problem (1). This scalarized problem
is of the form

min
x∈X

sR(f(x),λ). (2)

One example of achievement scalarizing functions is Chebyshev type

sR(f(x),λ) = max
i∈Nm

{

λi(fi(x)− fR
i )

}

, (3)

where the vectorfR is a reference point and the valueλi > 0 is a weighting
coefficient for the objective functionfi specifying the direction of the projection
from the reference point to the Pareto frontier.

If the reference point is unachievable, then the ASF is minimizing the distance
from the reference point to the feasible set. On the other hand, if the reference
point is achievable, we are minimizing the maximum value of the negative dif-
ference between the reference point and the nondominated set. By moving the
reference point or manipulatingλ, any (weakly) Pareto optimal solution can be
obtained [7].

In order to guarantee that problem (2) generates Pareto optimal solutions the
following properties of the ASFs can be described.

Definition 2.1. [17] An achievement scalarizing functionsR : Rm × R
m
+ → R is

said to be

1. increasingif for any y1, y2 ∈ R
m, y1 ≤ y2, thensR(y1,λ) ≤ sR(y2,λ).

2. strictly increasingif for any y1, y2 ∈ R
m, y1 < y2, thensR(y1,λ) <

sR(y2,λ).

3. strongly increasingif for any y1, y2 ∈ R
m, y1 ≤ y2 andy1 6= y2, then

sR(y1,λ) < sR(y2,λ).

Note that any strongly increasing ASF is also strictly increasing and any
strictly increasing ASF is also increasing. For example, a function of Chebyshev
type (3) is strictly increasing.

The following two theorems specifies necessary and sufficient conditions to
(weak) Pareto optimality:

4



Theorem 2.2. [16, 17]The following two statements are true:

1. LetsR be strongly increasing. Ifx∗ ∈ X is an optimal solution of problem
(2), thenx∗ is (weakly) Pareto optimal for problem(1).

2. If sR is increasing and the solutionx∗ ∈ X of problem(2) is unique, then
x∗ is Pareto optimal for problem(1).

Theorem 2.3.[7] If sR is strictly increasing andx∗ ∈ X is weakly Pareto optimal
solution for problem(1), then it is a solution of problem(2) with fR = f(x∗) and
the optimal value ofsR is zero.

A starting point for this paper is a parameterized achievement scalarizing func-
tion developed in [11] which extends the ideas of an additiveachievement scalar-
izing function introduced in [12]. LetIq be a subset ofNm of cardinalityq. A
parameterized achievement scalarizing function (PASF) [11] is of the form

s̃
q
R(f(x),λ) = max

Iq⊆Nm:|Iq|=q

{

∑

i∈Iq

max[λi(fi(x)− fR
i ), 0]

}

whereq ∈ Nm andλ = (λ1, . . . , λm), λi > 0, i ∈ Nm. The problem to be solved
is then

min
x∈X

s̃
q
R(f(x),λ). (4)

Due to the formation of PASF the value ofs̃qR is always nonnegative. With
different values of the parameterq different metrics varying betweenL1 to L∞

are obtained. Extreme cases areL1 metric withq = m, wherem is the number of
objectives, andL∞ metric withq = 1.

The following two properties were proven fors̃qR in [11].

Theorem 2.4. [11] Given problem(4), let fR be a reference point such that there
exists no feasible solution whose image strictly dominatesfR andλi > 0 for all
i ∈ Nm. Then any optimal solution of problem(4) is a weakly Pareto optimal
solution for problem(1).

Theorem 2.5. [11] Given problem(4), let fR be any reference point andλi > 0
for all i ∈ Nm. Then, among the optimal solutions of problem(4) there exists at
least one Pareto optimal solution for problem(1).

Theorem 2.5 implies that ifx∗ is a unique solution of problem (4), then it is a
Pareto optimal solution for problem (1).

With the PASF, several Pareto optimal solutions can be foundby moving the
reference point or by manipulating the weighting coefficients and the reference
point stays fixed. A limitation of the PASF is that the reference point should not
be strictly dominated by some feasible point. With the two-slope parameterized
ASF described in the next section this limitation can be forgot.
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3 Two-slope parameterized achievement scalarizing
functions

Next we introduce an extended parameterized ASF which takesachievability
of the reference point into account as in [3]. A two-slope parameterized ASF
(TSPASF) is defined as follows:

ŝ
q
R(f(x),λ

U ,λA) = max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x)− fR

i ), 0
}

(5)

+min
{

λA
i (fi(x)− fR

i ), 0
}

]

}

,

whereq ∈ Nm, λU = (λU
1 , . . . , λ

U
m) andλA = (λA

1 , . . . , λ
A
m), λ

U
i , λ

A
i > 0, i ∈

Nm. Either of these two different weighting vectorsλU , λA are used depending
on whether the reference point is achievable or unachievable, respectively. The
problem to be solved is then

min
x∈X

ŝ
q
R(f(x),λ

U ,λA). (6)

Notice that if q = 1, then ŝqR has the same formation than two-slope ASF
proposed in [3].

For the TSPASF is possible to prove similar result as Theorem2.4. Note that
the assumption of nonexisting feasible solution which image strictly dominates
fR is not needed.

Theorem 3.1. Given problem(6) and letλU
i , λ

A
i > 0 for all i ∈ Nm. Then any

optimal solution of problem(6) is a weakly Pareto optimal solution for problem
(1).

Proof. Letx∗ be an optimal solution of problem (6). Assume thatx∗ is not weakly
Pareto optimal. Then there exists a feasible solutionx′ ∈ X such thatfi(x′) <
fi(x

∗) for all i ∈ Nm.
For any x ∈ X, denote Ix =

{

i ∈ Nm | fR
i ≤ fi(x)

}

and Jx =
{

i ∈ Nm | fR
i > fi(x)

}

. SinceIx′ ⊆ Ix∗ andJx
′ ⊇ Jx

∗ we obtain

ŝ
q
R(f(x

′),λU ,λA)

= max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x

′)− fR
i ), 0

}

+min
{

λA
i (fi(x

′)− fR
i ), 0

}]

}

= max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

I
x
′

λU
i (fi(x

′)− fR
i ) +

∑

i∈Iq
⋂

J
x
′

λA
i (fi(x

′)− fR
i )







< max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

I
x
′

λU
i (fi(x

∗)− fR
i ) +

∑

i∈Iq
⋂

J
x
′

λA
i (fi(x

∗)− fR
i )
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≤ max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

I
x
∗

λU
i (fi(x

∗)− fR
i ) +

∑

i∈Iq
⋂

J
x
∗

λA
i (fi(x

∗)− fR
i )







= max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x

∗)− fR
i ), 0

}

+min
{

λA
i (fi(x

∗)− fR
i ), 0

}]

}

= ŝ
q
R(f(x

∗),λU ,λA).

Inequality ŝqR(f(x
′),λU ,λA) < ŝqR(f(x

∗),λU ,λA) contradicts the assumption
of x∗ being an optimal solution of problem (6). This implies thatx∗ is weakly
Pareto optimal.

Also the following result similar to Theorem 2.5 can be proven for the
TSPASF.

Theorem 3.2. Given problem(6) and letλU
i , λ

A
i > 0 for all i ∈ Nm. Then

among the optimal solutions of problem(6) there exists at least one Pareto optimal
solution for problem(1).

Proof. Let x∗ be an optimal solution of problem (6) but not Pareto optimal solu-
tion. Then according to the definition of Pareto optimality there existsx′ ∈ X
such thatfi(x′) ≤ fi(x

∗) for all i ∈ Nm andfj(x′) < fj(x
∗) for at least on index

j ∈ Nm. Now

ŝ
q
R(f(x

′),λU ,λA)

= max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x

′)− fR
i ), 0

}

+min
{

λA
i (fi(x

′)− fR
i ), 0

}]

}

= max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

I
x
′

λU
i (fi(x

′)− fR
i ) +

∑

i∈Iq
⋂

J
x
′

λA
i (fi(x

′)− fR
i )







≤ max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

I
x
∗

λU
i (fi(x

∗)− fR
i ) +

∑

i∈Iq
⋂

J
x
∗

λA
i (fi(x

∗)− fR
i )







(7)

= ŝ
q
R(f(x

∗),λU ,λA).

This completes the proof since if the inequality (7) is strict this contradicts the
assumption thatx∗ is an optimal solution for problem (6). If equality (7) holds,
thenx′ is an optimal solution for problem (6) and Pareto optimal forproblem
(1).

Theorem 3.2 implies the following corollary

Corollary 3.3. If an optimal solution of problem(6) is unique, then it is a Pareto
optimal solution for problem(1).
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Corollary 3.3 can be proven also in a different way. According to Theorem
2.2, if ŝqR is increasing and the solutionx∗ ∈ X of problem (6) is unique, thenx∗

is Pareto optimal.
Now ŝqR is increasing according to Definition 2.1, since takex1 ∈ X and

x2 ∈ X with fi(x1) < fi(x2) for all i ∈ Nm andλU
i , λ

A
i > 0 for all i ∈ Nm.

Then

ŝ
q
R(f(x1),λ

U ,λA)

= max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x1)− fR

i ), 0
}

+min
{

λA
i (fi(x1)− fR

i ), 0
}]

}

≤ max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x2)− fR

i ), 0
}

+min
{

λA
i (fi(x2)− fR

i ), 0
}]

}

= ŝ
q
R(f(x2),λ

U ,λA).

The following result guarantees that with TSPASFs it is possible to obtain
every weakly Pareto optimal solution.

Theorem 3.4. If x∗ is weakly Pareto optimal for problem(1), then it is a solution
of problem(6) with fR = f(x∗) and optimal value is zero.

Proof. Theorem 2.3 implies this theorem if̂sqR is strictly increasing. Now we
prove that̂sqR indeed is strictly increasing.

Takex1 ∈ X andx2 ∈ X with fi(x1) < fi(x2) for all i ∈ Nm. Since
λU
i , λ

A
i > 0 for all i ∈ Nm, Ix1

⊆ Ix2
andJx1

⊇ Jx2
, we obtain

ŝ
q
R(f(x1),λ

U ,λA)

= max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x1)− fR

i ), 0
}

+min
{

λA
i (fi(x1)− fR

i ), 0
}]

}

= max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

Ix1

λU
i (fi(x1)− fR

i ) +
∑

i∈Iq
⋂

Jx1

λA
i (fi(x1)− fR

i )







< max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

Ix2

λU
i (fi(x2)− fR

i ) +
∑

i∈Iq
⋂

Jx2

λA
i (fi(x2)− fR

i )







= max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x2)− fR

i ), 0
}

+min
{

λA
i (fi(x2)− fR

i ), 0
}]

}

= ŝ
q
R(f(x2),λ

U ,λA).

It is also possible to prove that the convexity of the original objective functions
of problem (1) preserves also toŝqR. However, this proof necessitates the following
lemma.
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Lemma 3.5. Let functionsfi be the objective functions of problem(1) and
sets Ix and Jx are defined byIx =

{

i ∈ Nm | fR
i ≤ fi(x)

}

and Jx =
{

i ∈ Nm | fR
i > fi(x)

}

. If all the functionsfi are convex andx ∈ X, where
X is a convex set, then

1. Ix ⊂ (Ix1

⋃

Ix2
)

2. Jx ⊃ (Jx1

⋂

Jx2
).

Proof. Let x = θx1 + (1 − θ)x2 ∈ X, θ ∈ [0, 1] be a convex combination of
x1 ∈ X andx2 ∈ X, whereX is convex. Sincefi assumed to be convex the
following holds

fi(x) ≤ θfi(x1) + (1− θ)fi(x2) for all i. (8)

In order to proof the first case consider an indexi such thati ∈ Ix and i /∈
(Ix1

⋃

Ix2
). Sincei ∈ Ix then fR

i ≤ fi(x) and sincei /∈ (Ix1

⋃

Ix2
) then

fR
i > fi(x1) andfR

i > fi(x2). The latter property implies the following

fR
i = θfR

i + (1− θ)fR
i > θfi(x1) + (1− θ)fi(x2). (9)

Sincefi is convex inequality (8) holds and from this, inequality (9)and the as-
sumption thati ∈ Ix follows

fR
i ≤ fi(x) ≤ θfi(x1) + (1− θ)fi(x2) < fR

i

which contradicts the assumption thati /∈ (Ix1

⋃

Ix2
) and thusi ∈ (Ix1

⋃

Ix2
).

Same holds for every index ofi ∈ Ix and thusIx ⊂ (Ix1

⋃

Ix2
).

In the second case assume that an indexi ∈ (Jx1

⋂

Jx2
) and thusfR

i > fi(x1)
andfR

i > fi(x2). This property and the convexity offi implies

fR
i = θfR

i + (1− θ)fR
i > θfi(x1) + (1− θ)fi(x2) ≥ fi(x).

Now fR
i > fi(x) and thusi ∈ Jx. Same holds for every index ofi ∈ (Jx1

⋂

Jx2
)

and thusJx ⊃ (Jx1

⋂

Jx2
).

Theorem 3.6.Let functionsfi be the objective functions of problem(1). If all the
functionsfi are convex then̂sqR(f(x),λ

U ,λA) is also convex whenx ∈ X, where
X is a convex set.

Proof. Let x = θx1 + (1 − θ)x2 ∈ X, θ ∈ [0, 1] be a convex combination
of x1 ∈ X andx2 ∈ X, whereX is convex. Sincefi assumed to be convex,
inequality (8) holds.

Now according to Lemma 3.5Ix ⊂ (Ix1

⋃

Ix2
) andJx ⊃ (Jx1

⋂

Jx2
) and we

have

ŝ
q
R(f(x),λ

U ,λA)

= max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x)− fR

i ), 0
}

+min
{

λA
i (fi(x)− fR

i ), 0
}]

}
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= max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

Ix

λU
i (fi(x)− fR

i ) +
∑

i∈Iq
⋂

Jx

λA
i (fi(x)− fR

i )







≤ max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq
⋂
(Ix1

⋃
Ix2

)

λU
i (θfi(x1) + (1− θ)fi(x2)− fR

i )

+
∑

i∈Iq
⋂
(Jx1

⋂
Jx2

)

λA
i (θfi(x1) + (1− θ)fi(x2)− fR

i )

}

= max
Iq∈Nm: |Iq|=q

{

∑

i∈Iq
⋂
(Ix1

⋃
Ix2

)

λU
i (θ(fi(x1)− fR

i ) + (1− θ)(fi(x2)− fR
i ))

+
∑

i∈Iq
⋂
(Jx1

⋂
Jx2

)

λA
i (θ(fi(x1)− fR

i ) + (1− θ)(fi(x2)− fR
i ))

}

≤ θ max
Iq∈Nm: |Iq|=q

∑

i∈Iq
⋂

Ix1

λU
i (fi(x1)− fR

i )

+ (1− θ) max
Iq∈Nm: |Iq|=q

∑

i∈Iq
⋂

Ix2

λU
i (fi(x2)− fR

i )

+ θ max
Iq∈Nm: |Iq|=q

∑

i∈Iq
⋂

Jx1

λA
i (fi(x1)− fR

i )

+ (1− θ) max
Iq∈Nm: |Iq|=q

∑

i∈Iq
⋂

Jx2

λA
i (fi(x2)− fR

i )

= θ max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

Ix1

λU
i (fi(x1)− fR

i ) +
∑

i∈Iq
⋂

Jx1

λA
i (fi(x1)− fR

i )







+ (1− θ) max
Iq∈Nm: |Iq|=q







∑

i∈Iq
⋂

Ix2

λU
i (fi(x2)− fR

i ) +
∑

i∈Iq
⋂

Jx2

λA
i (fi(x2)− fR

i )







= θ ŝ
q
R(f(x1),λ

U ,λA) + (1− θ) ŝqR(f(x2),λ
U ,λA).

Now ŝqR(f(x),λ
U ,λA) ≤ θ ŝqR(f(x1),λ

U ,λA)+ (1− θ) ŝqR(f(x2),λ
U ,λA) and

thus convexity is preserved.

Note that in order to guarantee Pareto optimality of a solution produced we
can add an augmented term [7] to (5) and the following augmented form

ŝ
q
R + ρ

∑

i∈Nm

λi(fi(x)− fR
i ), ρ > 0

is used in practice.
The advantages of TSPASF are that we always find at least a weakly Pareto

optimal solution and the different solutions may be obtained by changing the ref-
erence point, weighting vectors or the value of the parameter q. Additionally,

10



compared with PASF there is no restrictions for the locationof the reference point
and there is no need for any tests of achievability of the reference point since the
formulation (5) uses always the right weighting coefficient.

The parameterization used in TSPASF and PASF gives a systematic way to
produce possible different (weakly) Pareto optimal solutions from the same pref-
erence information with different metrics. The systematicway of this kind may
be useful in some interactive methods [7], for example synchronous NIMBUS
[10], using several ASFs basing on the same preference information. In order to
find different (weakly) Pareto optimal solutions problem (6) can be solved with
all values or just some values of the parameterq.

In problem (6) exists a min-max term and thus the problem is nonsmooth even
if the objective functions of problem (1) are differentiable. Nonsmooth problems
can be solved efficiently with bundle methods [4]. Problem (6) can also be turned
into differentiable MINLP form as follows

min α (10)

s. t. α ≥
∑

i∈Iqs

[

λU
i (1− zsi )(fi(x)− fR

i ) + zsi λ
A
i (fi(x)− fR

i )
]

, s = 1, . . . ,

(

m

q

)

fR
i − fi(x) ≤ zsiM, i ∈ Iq, s = 1, . . . ,

(

m

q

)

fR
i − fi(x) ≥ (zsi − 1)M, i ∈ Iq, s = 1, . . . ,

(

m

q

)

x ∈ X, zsi ∈ {0, 1}, i ∈ Nm, s = 1, . . . ,

(

m

q

)

,

wheres enumerates aq-element subsetsIqs of an m-element setNm, zsi is a
binary variable andM is a sufficiently large number to ensure thatzsi = 1 if
and only if fR

i − fi(x) > 0 andzsi = 0 if and only if fR
i − fi(x) ≤ 0. Due

to the binary variablezsi some mixed-integer programming solver, for example
generalizedαECP algorithm [2], is needed.

According to Theorem 3.6 in the case there all the objectivesfi are convex
alsoŝqR is convex and thus the global optimum can be found. In general, if the ob-
jectivesfi are nonconvex, then problem (6) can be solved with bundle method and
problem (10) withαECP algorithm but only the local optimum can be guaranteed.
If the objectives are assumed to bef ◦-pseudoconvex then also global optimum can
be guaranteed with bundle [6] andαECP [2] method.

11



4 Case of three objectives

In order to illustrate the functioning of TSPASF, let us consider a special case
wherem = 3 which is ŝqR in case of three objectives. Now (5) has the form

ŝ
q
R(f(x),λ

U ,λA) = max
Iq⊆{1,2,3}:|Iq|=q

{

∑

i∈Iq

[

max
{

λU
i (fi(x)− fR

i ), 0
}

+min
{

λA
i (fi(x)− fR

i ), 0
}

]

}

,

whereq = 1, 2, 3, λU = (λU
1 , λ

U
2 , λ

U
3 ) andλA = (λA

1 , λ
A
2 , λ

A
3 ), λ

U
i , λ

A
i > 0,

i ∈ N3. Now
for q = 1:

ŝ1R(f(x),λ
U ,λA) = max

{

max
{

λU
1 (f1(x)− fR

1 ), 0
}

+min
{

λA
1 (f1(x)− fR

1 ), 0
}

;

max
{

λU
2 (f2(x)− fR

2 ), 0
}

+min
{

λA
2 (f2(x)− fR

2 ), 0
}

;

max
{

λU
3 (f3(x)− fR

3 ), 0
}

+min
{

λA
3 (f3(x)− fR

3 ), 0
}

}

for q = 2:

ŝ2R(f(x),λ
U ,λA) = max

{

max
{

λU
1 (f1(x)− fR

1 ), 0
}

+min
{

λA
1 (f1(x)− fR

1 ), 0
}

+max
{

λU
2 (f2(x)− fR

2 ), 0
}

+min
{

λA
2 (f2(x)− fR

2 ), 0
}

;

max
{

λU
1 (f1(x)− fR

1 ), 0
}

+min
{

λA
1 (f1(x)− fR

1 ), 0
}

+max
{

λU
3 (f3(x)− fR

3 ), 0
}

+min
{

λA
3 (f3(x)− fR

3 ), 0
}

;

max
{

λU
2 (f2(x)− fR

2 ), 0
}

+min
{

λA
2 (f2(x)− fR

2 ), 0
}

+max
{

λU
3 (f3(x)− fR

3 ), 0
}

+min
{

λA
3 (f3(x)− fR

3 ), 0
}

}

for q = 3:

ŝ3R(f(x),λ
U ,λA) =max

{

λU
1 (f1(x)− fR

1 ), 0
}

+min
{

λA
1 (f1(x)− fR

1 ), 0
}

+max
{

λU
2 (f2(x)− fR

2 ), 0
}

+min
{

λA
2 (f2(x)− fR

2 ), 0
}

+max
{

λU
3 (f3(x)− fR

3 ), 0
}

+min
{

λA
3 (f3(x)− fR

3 ), 0
}

.

Next we give some graphical illustrations of 1-level sets in3-dimensional
space for both parameterized ASFs̃qR and two-slope parameterized ASFŝqR to see
the difference between them. The algebraic form ofs̃3R is given in [11]. The view
is restricted within a rectangular{f = (f1, f2, f3)

T : −2 ≤ fi ≤ 1, i ∈ N3} and
the reference point is assumed to befR = (0, 0, 0)T . All the objective functions
are assumed to be identity mappingsfi(x) = x and all weighting coefficients are
equal to one,λU

1 , λ
U
2 , λ

U
3 , λ

A
1 , λ

A
2 , λ

A
3 = 1. Figures 2a, 3a and 4a show 1-level set
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of s̃1R, s̃2R and s̃3R respectively and Figures 2b, 3b and 4b show 1-level set ofŝ1R,
ŝ2R andŝ3R respectively.

Notice that a choice of the parameterq affects to the shape ofR-levels. These
R-levels may vary from sharp to flat. Those cases where faces are parallel to the
facesf1f2, f1f3 or f2f3 correspond to situation then one of the maxima equals
to one and other two are less than one or zero. If sum of two maxima equals to
one and the third is less than one or zero, it corresponds the case where faces are
sloped and parallel to the coordinate rays. If the all three maxima are positive and
sum of them equals to one we have either a flat face (see Figure 4b) or a triangle
pyramid with a top vertex(1

2
, 1
2
, 1
2
) in Figure 3b. These top vertices corresponds

to those cases when all three maxima are participating.
Note that if the resulting optimal value ofR-level set is positive in case of

TSPASF, then it corresponds to the case of unachievable reference point. A neg-
ative value signals about reference point achievability. In case of PASF negative
value ofR-level set is not possible.

(a) 1-level set for̃s1R(f(x),λ) (b) 1-level set for̂s1R(f(x),λ
U ,λA)

Figure 2: 1-level sets for PASF and TSPASF withq = 1

(a) 1-level set for̃s2R(f(x),λ) (b) 1-level set for̂s2R(f(x),λ
U ,λA)

Figure 3: 1-level sets for PASF and TSPASF withq = 2
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(a) 1-level set for̃s3R(f(x),λ) (b) 1-level set for̂s3R(f(x),λ
U ,λA)

Figure 4: 1-level sets for PASF and TSPASF withq = 3

5 Computational experiments

In order to explore the behavior of TSPASF several test problems described in
[9] are used. The computational calculations are carried out by applying multiob-
jective proximal bundle method [5]. This method is designedfor nonconvex and
constrained problems with possibly several objective functions.

Computational tests are divided into two groups based on their convexity. In
both cases twenty reference points between the ideal and nadir point are randomly
generated and the used weighting vectorsλU , λA are of the form

λU =
1

fN − fR
, λA =

1

fR − f I

as suggested in [3].
In these computational tests we have concentrated on studying three aspects.

The first one is to guarantee that by changing the value of the parameterq we can
indeed obtain different solutions, not only in theory but also in practice. Another
interesting issue is a quality of the solutions produced or how much solutions dif-
fer. The last aspect, which has been singled out and studied,is the computational
time.

According to our results at the most of the time the solutionsobtained by
varying the value of the parameterq differ and the difference is significant both in
convex and nonconvex test problems. In the convex case the solutions produced
with different values of the parameterq are the same order whereas in the non-
convex test problemq = 1 turns out to be clearly the most time-consuming value
of the parameterq. Thus with TSPASF by varying metrics between Chebyshev
and linear metric, different solutions with good quality are obtained without grow-
ing computational efforts compared with the two-slope ASF [3] equaling the case
q = 1 in TSPASF.

In the following convex and nonconvex test problems are analyzed closer.
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5.1 Convex case

We consider closer the following convex Chankong-Haimes test problem [9]

min f(x) = ((x1 − 1)2 + (x2 − 1)2, (x1 − 2)2 + (x2 − 3)2, (x1 − 4)2 + (x2 − 2)2)

s. t. x1 + 2x2 ≤ 10

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 4,

with three objectives and two variables.
In the following, we refer to cases where for one reference point a solution

is calculated solution with every value of the parameterq ∈ N3 and thus twenty
cases are considered due to the number of the generated reference points. Among
these randomly generated reference points, there are 40% of achievable reference
points and60% of unachievable reference points.

In Table 1 the differences of solutions and also the quality of these solutions
are analyzed. Here solutions with linear metric (q = 3) and Chebyshev metric
(q = 1) are compared with the case whereq = 2 and the used metric is something
between Chebyshev and linear metric.

The first row in Table 1 presents the percentage value of caseswhere both
valuesq = 1 andq = 3 give the same solution as the solution obtained with value
q = 2. As Table 1 says with valuesq = 3 andq = 2 we never obtain the same
solution and with valuesq = 1 andq = 2 only 15% of cases solutions were the
same. Thus by varying the value of the parameterq mostly different solutions are
obtained.

In the second row the quality of the solutions by calculatingthe (relative)
distances between solutions is considered. Table 1 reportsthe averages of these
distance calculations. In comparison of distances betweensolutions obtained with
q = 1 andq = 2 the average distance in objective space is 0.52065. By excluding
the cases where the same solution was obtained every distance belongs to the
interval from 0.069274 to 1.59813 in objective space. The average distance with
valuesq = 2 andq = 3 is 0.31203 in objective space and each of these solutions
belongs to the interval from 0.11194 to 0.70154 in objectivespace. Based on
these calculations it can be said that the differences between the solutions are
significant.

Since the solutions obtained by varying the value of the parameterq actually
are various solutions it is also interesting to know what theprice of the different
solutions is in terms of number of iterations. To explore this aspect, in Table 2 we
describe the average number of iterations and function calls needed when calcu-
lations are carried out with multiobjective proximal bundle method. In these cal-
culations, both average number of iterations and function calls are approximately
on the same order regardless of the value of the parameterq.
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Table 1: Differences of solutions

Convex case q = 1 q = 3
Cases wherex∗ with q = 2 equals tox∗ with 15% 0%
Average relative distance betweenf(x∗) with q = 2 and 0.52065 0.31203
Nonconvex case q = 1 q = 3
Cases wherex∗ with q = 2 equals tox∗ with 0% 10%
Average relative distance betweenf(x∗) with q = 2 and 201203.24 0.15565

Table 2: Computational times

Convex case q = 1 q = 2 q = 3
Average number of iterations 12.20 16.95 6.00
Average number of function calls15.10 22.80 8.10
Nonconvex case q = 1 q = 2 q = 3
Average number of iterations 30.9 7.45 5.85
Average number of function calls53.3 15.45 13.6

5.2 Nonconvex case

We scrutinize the following nonconvex Water resources planning test problem [9]

min f(x) = (e0.001x1x0.021 x22, 0.5x
2
2, −e0.005x1x0.0011 x22)

s. t. 0.01 ≤ x1 ≤ 1.3

0.01 ≤ x2 ≤ 10,

with are three objectives and two variables as in the exampleproblem in the con-
vex case. Also in this nonconvex case 20 different referencepoints are generated
randomly. There are now35% of achievable and65% of unachievable reference
points.

In Table 1, the quality of solutions is analyzed also in the nonconvex case. As
Table 1 shows with valuesq = 1 andq = 2 the same solution was never obtained
and with valuesq = 2 andq = 3 only 10% of cases the solutions produced are
the same. Thus different solutions are obtained by varying the parameterq also in
the nonconvex case. By comparing this with the convex case, we see that the total
number of the same solutions is now smaller and the same solutions are produced
only with valuesq = 2 andq = 3 whereas in the convex case the same solutions
are produced with valuesq = 1 andq = 2.

When we consider the (relative) distances between the solutions produced de-
scribed in Table 1, we see that in the nonconvex case the distances are significant
as was also in the convex example. The average distance between solutions ob-
tained withq = 1 andq = 2 is 201203.24 in objective space and every distance
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belongs to the interval from 0.0075685 to 762114 The distances between solutions
obtained withq = 2 andq = 3 is 0.15565 in objective space. By excluding the
cases where the same solution was obtained every distance belongs to the interval
from 0.00067393 to 0.99999 in objective space.

As said, in Table 2 is described computational times and in the convex case
the value of the parameterq do not affect computational time significantly. In the
nonconvex case the most time-consuming value of the parameterq is 1 represent-
ing Chebyshev type function. In this case the number of iterations and function
calls are both significantly larger than corresponding values for other two values
of the parameterq.

6 Conclusion

In this paper, we have presented a new family of achievement scalarizing functions
based on a parameterization utilizing two different weighting vectors depending
on whether the reference point is achievable or not. We have proven that we
always find at least weakly Pareto optimal solution and if thesolution is unique it
is Pareto optimal. We have also proven that every weakly Pareto optimal solution
can be produced. Furthermore, we can find different solutions by changing the
value of the parameterq, the reference point or weighting vectors. Additionally,
to use TSPASFs there is no need for any assumptions about the reference point or
for the test of achievability of the reference point.

We have also illustrated the shapes of differentR-levels and the computational
tests have been performed for both convex and nonconvex problems. These results
have shown that the quality of solutions produced is good andthe computational
time does not grow with different values of the parameterq in the convex case but
in nonconvex case Chebyshev type function turn out the most time-consuming
value of the parameterq.

The presented TSPASF gives a systematic way to produce different (weakly)
Pareto optimal solutions from the same preference information with different
metrics. The property of this kind could be used for example in some interactive
methods. Different solutions can be calculated with all values of the parameterq
or just some of them. Thus it is interesting to know more abouthow the valueq
affects the shape ofR-level.
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