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Abstract

Most of the methods for multiobjective optimization utdizome scalarization
technique where several goals of the original multiobyeqgtroblem are converted
to one single-objective problem. One common scalarizatchnique is a use
of achievement scalarizing functions. In this paper, weothice a new family
of two-slope parameterized achievement scalarizing fanstfor multiobjective
optimization. With these two-slope parameterized ASFs ame guarantee the
(weak) Pareto optimality of the solutions produced and \eyereakly) Pareto
optimal solution can be obtained. Parameterization ofiimd gives a systematic
way to produce different solutions from the same preferenfiemation. With
two weighting vectors depending on the achievability ofiéference point there
is no need for any assumptions about the reference pointdditien to theory,
we give the graphical illustrations of two-slope paramesst ASFs and analyze
the quality of the solutions produced in convex and noncetestproblems.

Keywords: Multiobjective optimization, achievement scalarizingnétions,
Pareto optimal solutions
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1 Introduction

In many applications, the aim is to optimize several obyestiand to find a solu-
tion which is as good as possible for every objective at timeesame. Usually,
these objectives are conflicting and due to that it is notiptesto find a solution
being optimal for every objective simultaneously. That isyveompromises be-
tween these conflicting objectives are needed. The compmimioptimal if any
objective cannot be improved without impairing at least ohée other objec-
tives. The problem of this kind is called a multiobjectivetiopzation problem
and its optimal solution is called a Pareto optimal solution

Usually there are several mathematically equally goodtBaptimal solu-
tions and someone needs to choose the best solution for iaytartproblem.
This person is called a decision maker who has an insighttiregroblem. It
is also possible to obtain some additional information @ pinoblem from the
decision maker.

As it was said, the problem setting of multiobjective op#ation problem dif-
fers a lot from the single-objective optimization and byaad only one objective
of the multiobjective optimization problem with a singlejective method can
lead to an arbitrary bad solution with respect to other dhbjes for the original
multiobjective problem. Thus different methods in ordestdve multiobjective
problems are needed. Several methods are described in]3] @nd references
therein. Most of the methods for multiobjective optimipatutilize scalarization.
In scalarization at first several goals of the original noldjective problem are
converted to one single-objective problem and then apgloede suitable single-
objective method. Several scalarization techniques d@redaced and compared
in [8].

One of the most common scalarization technique is a use aéwahent
scalarizing functions [7, 14, 15]. In this approach, a refee point is, for in-
stance, asked from the decision maker and after that anvechent scalarizing
function is optimized in order to find a solution being thesdst to the reference
point.

Chebyshev type achievement scalarizing function [14] es@irthe most pop-
ular achievement scalarizing functions. If the referenai@fds unachievable, the
distance from the reference point to the feasible regionmmized. In graphical
illustration in Figure 1a right-angled contours are insirg from the unachiev-
able reference point towards the feasible region. The @btsolution is the first
point from the feasible region touching the contour. On ttieeohand, if the ref-
erence pointis achievable, the maximum value of the negdifference between
the reference point and the nondominated set (i.e. the $&dreto optimal solu-
tions in objective space) is minimized. In graphical ilhasion in Figure 1b the
optimal solution for scalarizied problem is the nondomaaigpoint touching the
contour last.

The wide usage of Chebyshev type achievement scalarizimggiéun is due to
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(a) Unachievable reference point (b) Achievable reference point

Figure 1: Graphical illustration of Chebyshev type achimeeat scalarizing func-
tion

its good mathematical properties. With tliig metric any weakly Pareto optimal
solution can be obtained. Also other type of metrics can leelufor example
linear L; metric but unlike Chebyshev metric with; metric not every weakly
Pareto optimal solution are necessarily obtained in nomogase since there
might exist nonsupported solutions. To overcome this deskbn [12] there is
presented.; based metric ensuring that every weakly Pareto optimatisolgcan
be obtained.

In this paper, we propose a new family of two-slope paranesdrachieve-
ment scalarizing functions (TSPASF). These functions lbashe parameterized
achievement scalarizing functions (PASF) introduced I.[By using parame-
terization metrics varying from Chebyshev metric to linesatric are possible to
utilize. We generalize the PASF by utilizing the idea of twifedtent weighting
vectors depending on the achievability of the referencetm®scribed in [3]. The
advantage of this new TSPASF is that any Pareto optimalisalgan be found
by moving the reference point or changing the weightingmectAnother advan-
tage compared with PASF is that we need neither to assumhbiagydbout the
reference point nor to test whether the reference pointhggable or not. This
occurs since the formulation of the problem guaranteesthigatight weighting
vector is used in every case.

This paper is organized as follows: In Section 2 we recallesbasic results
of multiobjective optimization and describe the ideas dfiaeement scalarizing
functions and parameterized achievement scalarizingifure Section 3 is ded-
icated to a new two-slope parameterized achievement fumetid a special case
of three objectives is analyzed in Section 4. In Section 5giwe some numerical
examples and in Section 6 some final remarks.



2 Preliminaries

We consider a multiobjective optimization problem whelletla¢ objectives are
minimized simultaneously. This problem is of the form

min - f(x) = (fi(®), ..., fu(®)) (1)

s.t. x e X,

where the partial objective functions are defingd: X — R, i € N,, =
{1,...,m} and they are assumed to be lower semicontinuous. AYset R"

is a non-empty compact set of feasible solutions. The imagewsetX is called

a feasible objective regiod = f(X). The objective functions are also assumed
to be conflicting and thus it is impossible to have a solutiemg minimal for
every objective function.

We recall some basic results from multiobjective optiniaat For more de-
tails we refer to [1, 7]. In the following we use notatien< y if z; < y; for all
1 € N,, and notatione < y if x; <y, foralli € N,,.

An optimal solution of problem (1) is called Pareto optimfaamy objective
cannot be improved without deteriorating some other object the same time.
Formally we can define that a solutiatt € R™ of the problem (1) isPareto
optimalif there does not exist another powtc R" such thatf;(x) < f;(x*)
foralli € N, and f;(x) < f;(«*) for at least one index € N,,. Under the
assumptions of problem (1), Pareto optimal solutions 48 Usually, there
exist several mathematically equally good Pareto optiroklt®ns and a set of
these Pareto optimal solutions is called Bageto set

We can also define a generalized concept where a solutiah R” is called
weakly Pareto optimaif there does not exist another poimt € R™ such that
fi(x) < fi(x*) for all i € N,,. In this case there exists no other solution such that
all objectives have a better value. Note that the set of Bangtimal solutions is
a subset of the set of weakly Pareto optimal solutions.

To get some information about Pareto optimal solutions aalidnd a nadir
vector, fI and f%, can be calculated giving a lower and an upper bound for the
range of Pareto optimal solutions, respectively. The camepts of thadeal vec-
tor are obtained by minimizing every objective separately. sTtie::th compo-
nent of the ideal vector can be defined by solving the probtém. x f;(x). The
ideal vector tells how good solutions can be found but noymaéal vector is not
a feasible solution. If the ideal vector is a feasible solutithen it would clearly
be also an optimal solution of problem (1).

The nadir vectorrelates the upper bound for Pareto optimal solutions repre-
senting the worst solution. The components of the nadirorexdn be calculated
by maximizing objectives over the set of Pareto optimal sohs. Due to this
optimization over the Pareto set it is usually difficult tdah the nadir vector but
it can be approximated for example with the pay-off matrixq]L



A utopian vectomives the strictly better solution than any of the Pareta-opt
mal solution and even better than the ideal vector. The corepis of the utopian
vector are of the fornfY = f/ — ¢, wheres; > 0 is a sufficient small constant.

A point which consists of desirable values for objectivedumns is called a
reference poinf® = (f2, ..., fE). These desirable values have been provided by
the decision maker who tells what (s)he wishes to achieve.réference point is
said to beachievablef /% € Z+R" whereRT = {y € R™|y; > 0fori € N,,}.
Otherwise the reference point is said tourachievable

In this paper, we are focusing on achievement scalarizingtions (ASF)
[14, 15] in order to scalarize multiobjective problem (1hig scalarized problem
is of the form

min sr(f(x), A). 2)

One example of achievement scalarizing functions is Chedys/pe
sr(f(), A) = max {\i(fi(z) = £} (3)

where the vectorf? is a reference point and the value > 0 is a weighting
coefficient for the objective functioli specifying the direction of the projection
from the reference point to the Pareto frontier.

If the reference pointis unachievable, then the ASF is miiimg the distance
from the reference point to the feasible set. On the othed hifithe reference
point is achievable, we are minimizing the maximum valueha hegative dif-
ference between the reference point and the nondominatedganoving the
reference point or manipulatiny, any (weakly) Pareto optimal solution can be
obtained [7].

In order to guarantee that problem (2) generates Paretmalpgiolutions the
following properties of the ASFs can be described.

Definition 2.1. [17] An achievement scalarizing functiog : R™ x R} — R is
said to be

1. increasingif for any y,, y, € R, y; < y,, thensg(y,, A) < sr(y,, A).

2. strictly increasingif for any y,, y, € R™, y;, < y,, thensg(y,;,A) <
SR(y27 A)

3. strongly increasingf for any y,, y, € R, y, < y, andy, # y,, then
SR(yb )‘> < SR(y27 >‘)

Note that any strongly increasing ASF is also strictly iasiag and any
strictly increasing ASF is also increasing. For examplejracfion of Chebyshev
type (3) is strictly increasing.

The following two theorems specifies necessary and sufficienditions to
(weak) Pareto optimality:



Theorem 2.2.[16, 17] The following two statements are true:

1. Letsgy be strongly increasing. i£* € X is an optimal solution of problem
(2), thenz* is (weakly) Pareto optimal for problei).

2. If s is increasing and the solution* € X of problem(2) is unique, then
x* is Pareto optimal for problenl).

Theorem 2.3.[7] If sg is strictly increasing ane:* € X is weakly Pareto optimal
solution for problen(1), then it is a solution of problerf2) with /% = f(z*) and
the optimal value ofy is zero.

A starting point for this paper is a parameterized achievesealarizing func-
tion developed in [11] which extends the ideas of an addéti@evement scalar-
izing function introduced in [12]. Lef? be a subset oN,, of cardinalityq. A
parameterized achievement scalarizing function (PASE)igLof the form

S(f (@), A) = chéi,l?l}}q\ q{Zmax ~ I, ]}

SL

whereq € N, andA = (Ay,..., A\n), \; > 0, ¢ € N,,,. The problem to be solved
is then

min 5% (f (), ). (4)

Due to the formation of PASF the value &f is always nonnegative. With
different values of the parameterdifferent metrics varying betweeh; to L,
are obtained. Extreme cases akemetric withg = m, wherem is the number of
objectives, and..,, metric withg = 1.

The following two properties were proven fgf, in [11].

Theorem 2.4.[11] Given problent4), let f be a reference point such that there
exists no feasible solution whose image strictly domingteand \; > 0 for all

1 € N,,. Then any optimal solution of proble(d) is a weakly Pareto optimal
solution for problen(l).

Theorem 2.5.[11] Given problem(4), let % be any reference point and > 0
for all i € N,,. Then, among the optimal solutions of probléhthere exists at
least one Pareto optimal solution for probl€d).

Theorem 2.5 implies that it* is a unique solution of problem (4), thenitis a
Pareto optimal solution for problem (1).

With the PASF, several Pareto optimal solutions can be fdaynohoving the
reference point or by manipulating the weighting coeffitseand the reference
point stays fixed. A limitation of the PASF is that the refarepoint should not
be strictly dominated by some feasible point. With the twaps parameterized
ASF described in the next section this limitation can bedbrg
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3 Two-slope parameterized achievement scalarizing
functions

Next we introduce an extended parameterized ASF which takbgvability
of the reference point into account as in [3]. A two-slopeapaeterized ASF
(TSPASF) is defined as follows:

e = e LS [ (G0 00) @

I9eN,,: |11|=¢q el
+ min {)‘f(fz(‘f‘c) - fz'R)’ 0}} }’

whereq € N,,,, AV = AV, ... 0y andA? = (AL ), WA > 0,6 €
N,.. Either of these two different weighting vectox§, A* are used depending
on whether the reference point is achievable or unachieyaespectively. The
problem to be solved is then

gg 5L(f(x), AV, A%). (6)

Notice that if¢ = 1, thens}, has the same formation than two-slope ASF
proposed in [3].

For the TSPASF is possible to prove similar result as Thed@gmNote that
the assumption of nonexisting feasible solution which iemagictly dominates
ffis not needed.

Theorem 3.1. Given problem(6) and let\Y, A\ > 0 for all i € N,,. Then any

[ )

optimal solution of problen(6) is a weakly Pareto optimal solution for problem
(1).

Proof. Letx* be an optimal solution of problem (6). Assume tlais not weakly
Pareto optimal. Then there exists a feasible soluiibr X such thatf;(x') <
fi(x*) forall i € N,,.

For anyxz € X, denotel, = {ieN, | ff<fi(xz)} and J, =
{ieN, | ff> fi(x)}. Sincel, C I,- and.J, 2 J,- we obtain

§(f(@), AV, A%

= max {Z [max (A (fi(a') = f{%),0} + min {N(fi(2) — fiR)vo}]}

 [9EN: [T9]=
ENm: [17]=q iela

= max { Z )\ZU(fi(w')—sz)—i— Z Af(fz(wl)fzﬁ')}

 [9€N,: [19]=
millf=a e fomyr, Q€19 () J

< max { S W) - S Afﬁ$ﬁ)ﬂ%}

[9€N,: [19]=
millf=a e fomyr, Q€19 J



< a4 M) - Y M) -
19€Nm: |I7]=q €19 () I iel9 ) J

= nax {Z [max { A (fi(z*) = £1%),0} + min {A? (fi(z") - fiRLO}]}

 [9EN: [T9]=
ENm: [17]=q iela

= §%(f(z"), AV, A7),

Inequality 3% (f ('), AV, A*) < 5%4(f(z*),AY, A*) contradicts the assumption
of * being an optimal solution of problem (6). This implies thgtis weakly
Pareto optimal. O

Also the following result similar to Theorem 2.5 can be pmover the
TSPASF.

Theorem 3.2. Given problem(6) and let\Y, A4 > 0 for all i € N,,. Then

among the optimal solutions of probld€6) there exists at least one Pareto optimal
solution for problen(l).

Proof. Let z* be an optimal solution of problem (6) but not Pareto optinodlis
tion. Then according to the definition of Pareto optimallere existsr’ € X
such thatf;(z') < f;(x*) for alli € N,,, and f;(z’) < f;(x*) for at least on index
Jj € N,,,. Now

SR(f(@), A7, 2%

T9€N,,: |11]=q

= max { [maX{/\ﬁ](fi(w')—ff)’O}+min{/\f(fi(w')—ff)’0}}}
eld

fqewrﬁf”?qq{ 2 N =N+ D Af(fxx’)fﬁ)}

i€l Iy i€l Jy

< max { Yo N -H+ Y A?(fi(w*)sz)} (7)

= I19€N,,: ‘I(I‘:q iejqﬂjw* iejqﬂjw*

= &5(f (@), A7, 2%,
This completes the proof since if the inequality (7) is s$ttigs contradicts the
assumption that* is an optimal solution for problem (6). If equality (7) holds

thenz’ is an optimal solution for problem (6) and Pareto optimal fooblem
Q). O

Theorem 3.2 implies the following corollary

Corollary 3.3. If an optimal solution of probler(6) is unique, then it is a Pareto
optimal solution for problen{l).



Corollary 3.3 can be proven also in a different way. Accogdio Theorem
2.2, if 53 is increasing and the solutiaer € X of problem (6) is unique, thesa*
is Pareto optimal.

Now 5% is increasing according to Definition 2.1, since take € X and
xy € X With fi(z)) < fi(zo) foralli € N, and)\ﬁf,)\{‘ > 0 foralli € N,
Then

$L(f(z1), AV, A%

—  max {Z [max {)\?(fi(:cl) O} + min {)\ (fi(x1) 0}]

R I i€l }

< max {Z [max {)\?(fi(:cg) O} + min {)\ (fi(x2) 0}]

I9€N,: |I1]=¢q icla

= 8%(f(x2), AV, A4).

The following result guarantees that with TSPASFs it is pgesto obtain
every weakly Pareto optimal solution.

Theorem 3.4.1f x* is weakly Pareto optimal for problefd), then it is a solution
of problem(6) with [ = f(x*) and optimal value is zero.

Proof. Theorem 2.3 implies this theorem if, is strictly increasing. Now we
prove thats, indeed is strictly increasing.

Takex; € X andxy, € X with fi(x;) < fi(xy) for alli € N,,. Since
N4 >oforalli € N, I, C I, andJ,, D J,,, we obtain

)

§R(f($1), >‘U7 AA)

=~ max {Z [max {A{ (fi(z1) = f{%),0} + min {X(fi(z1) _fiR)vo}]}

 [9eN: [T
€ENp: | 19]=¢ el

= [qGNIEa\);ﬂ L { Z )\gj(fz(wl) - fiR) + Z )\ (fi(x1) — fR)}

1€l Iy iel1() Jao,

< Iquny,lf\);ﬂ:q { Z N (filme) — 1) + Z M (films) - fiR)}

€19 () Ly €19 Jay

= max {Z [max { AV (fi(z2) — £),0} + min { A} (fi(z2) — fﬁ>,0}]}

I‘IGN :|19)|=¢ icla
- §;]%(f(w2)7AU7>‘A)'
O

Itis also possible to prove that the convexity of the origoigective functions
of problem (1) preserves alsoi$. However, this proof necessitates the following
lemma.



Lemma 3.5. Let functionsf; be the objective functions of proble(t) and
sets I, and J, are defined byl, = {2 eN,, | ffi< fi(m)} and J, =
{ieN, | ff> fi(x)}. If all the functionsf; are convex andc € X, where
X is a convex set, then

1. I, C (I, U L)
2. Jo D (Joy N Ty )-

Proof. Letx = 0z, + (1 — 0)zs € X, 0 € [0, 1] be a convex combination of
x; € X andx,; € X, whereX is convex. Sincef; assumed to be convex the
following holds

In order to proof the first case consider an indesuch thati € I, andi ¢
(Ip, U I,). Sincei € I, then f® < fi(x) and sincei ¢ (I, J I.,) then
fft > fi(xy) andff > fi(x,). The latter property implies the following

=0fF+ (=0 fF > 0fi(z1) + (1 - 0) fi(z2). 9)

Since f; is convex inequality (8) holds and from this, inequality é)d the as-
sumption that € I, follows

FE< fi(m) < 0fi(my) + (1= 0) fi(xa) < ffF

which contradicts the assumption that (I, |J I,) and thusi € (I, U I, )-
Same holds for every index ofe I, and thusl, C (I, U Iz,)-

In the second case assume that an index.J,, () J.,) and thusf® > fi(x)
andff > fi(x,). This property and the convexity gf implies

=0+ (1 —0)fF > 0fi(z1) + (1= 0)fi(z2) > fi(w).

Now ft > fi(x) and thus € J,. Same holds for every index of (J,, () Ja,)
and thusJ, O (Jg, () Ja,)- O

Theorem 3.6. Let functionsf; be the objective functions of probldd). If all the
functionsf; are convex thed%(f(z), AV, A*) is also convex whem € X, where
X is a convex set.

Proof. Let x = 0z, + (1 — )y, € X, 6 € [0,1] be a convex combination
of x; € X andx, € X, whereX is convex. Sincef; assumed to be convex,
inequality (8) holds.

Now according to Lemma 3.5, C (I, U Iz,) andJ, O (Jx, [) J=,) and we
have

R(f (@), A7, a%)

=  max {Z [max {)\ZU(fZ(ac) - fZ-R),O} + min{)\fl(fi(w) — fﬁ)jo}]}

I9€N,,: |I|=
€Np: [1]=¢ icTe



> MW (filw) -

€l1N Iz

= max
19€N,,: |19|=¢q
< max { E
I9€N,,: [I1|=q |
m 1] i€l N(Tey UTay)

>

i€19 (\(Jay () Jg)

{ 3
€19 (\(Ipy U Twy)
.

i€l1N(Jzq NJzy)

A (O fi()

= max
 [9€N,: [19)=¢

icli N Ja

M (O fi(x1) +

A (O(fi(m1) —

> M=)

)

(1= 0)fi(z2) = £

+ (1 =0)fi(w2) - fiR)}

sz) + (1 - 0)(fl(w2) - sz))

MO filar) = S + (1= 0)(filw2) — fR))}

< M (fi R
- quN%a\}}ﬂ =q 61;1 e = 1)
1
+(1-9) M (fi R
( Iqurgaﬁql ; 61;1 (fi(z2) — f}7)
L)
+ (s 7
0, e E%J (fitwr) = 1)
T
+(1-96) MA(f; R
( Iqurf,lLaﬁﬂ ) 61;J (fi(x2) — fi)
L)
= 0 max ¢ > MN(file) - fH+ Y M) -
e ST (€19 () oy
+1=0)  max oY N (filz) = f+ D Nfilw) - £
(S m-| |*q ’iEanI:p2 iquﬂJ;BQ
=0 55(f(x1), A7, M%) + (1= 0) 35(f(m2), A, A1),
Now 54 (f(2), AV, A < 08%(f(1), AV, A 4+ (1 —0) 8%4(f(z2), AV, A*) and

thus convexity is preserved.

O

Note that in order to guarantee Pareto optimality of a sofupiroduced we
can add an augmented term [7] to (5) and the following augetkfarm

40> Alfim

ZENm

is used in practice.

1, p>0

The advantages of TSPASF are that we always find at least dyvMeateto

optimal solution and the different solutions may be obtdibg changing the ref-
erence point, weighting vectors or the value of the paramgteAdditionally,
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compared with PASF there is no restrictions for the locatibiine reference point
and there is no need for any tests of achievability of theregiee point since the
formulation (5) uses always the right weighting coefficient

The parameterization used in TSPASF and PASF gives a systewsy to
produce possible different (weakly) Pareto optimal sohsifrom the same pref-
erence information with different metrics. The systematay of this kind may
be useful in some interactive methods [7], for example syomobus NIMBUS
[10], using several ASFs basing on the same preferencemiafiton. In order to
find different (weakly) Pareto optimal solutions problem) ¢an be solved with
all values or just some values of the parameter

In problem (6) exists a min-max term and thus the problem msnwoth even
if the objective functions of problem (1) are differenti@bNonsmooth problems
can be solved efficiently with bundle methods [4]. Problejcgh also be turned
into differentiable MINLP form as follows

min « (10)
s. t. a>z (1 —2z2))(fi(z )—fﬁ)+zf)\§4(fi(m)—fﬁ)], s:l,...,(?>
eIl
fE— fi(z) < 2 M, ie[q,s:l,...,<zb>

FE— fi(x) > (25 — 1)M, ie[q,S:l,...,<7Z>

x e X, zfe{o,l},ieNm,szl,...,(m>,
q

where s enumerates g-element subset$? of an m-element selN,,, 27 is a
binary variable andV/ is a sufficiently large number to ensure that= 1 if
and only if f* — fi(xz) > 0 andzf = 0 if and only if f® — f;(x) < 0. Due

to the binary variable; some mixed-integer programming solver, for example
generalizedvECP algorithm [2], is needed.

According to Theorem 3.6 in the case there all the objectfyese convex
alsosf, is convex and thus the global optimum can be found. In genéthe ob-
jectivesf; are nonconvex, then problem (6) can be solved with bundlaodeind
problem (10) withb ECP algorithm but only the local optimum can be guaranteed.
If the objectives are assumed to ffepseudoconvex then also global optimum can

be guaranteed with bundle [6] andECP [2] method.
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4 Case of three objectives

In order to illustrate the functioning of TSPASF, let us ddes a special case
wherem = 3 which is 57, in case of three objectives. Now (5) has the form

8L(f(z), AV, A%) = max { > [maX{AZU(fi(:c) — ffH,0}

Iac{l23}I=q | ‘=7
+ min {)\ZA(fi(fU) - 1, 0}] }’

whereq = 1,2,3, AV = AV, AV, 0Y) andA? = (M 0808, AWV a4 > 0,

1 € N3. Now

forg = 1:

SR(/ (@), AY, %) = max { max (A} (/1(@) ~ f£7), 0} + min {X (f1(@) = f{),0}
max {5 (f2(z) — f37),0} + min {5 (fo(x) — f57),0};

max {2 (fa(@) — f),0} +min {33 (fs(@) — 5,0} }
for g = 2:
S/ (@), AV, %) = max { max (A (f1 () = £, 0} + min {X (1 (2) - £),0}
+max { Y (fa(@) — f29,0) + min { M (fa(®) — f29),0};
max {\Y (f1(z) — £%),0} + min {7\ (fi(2) — fF),0}
+max {AY (f3(2) — f49),0} + min {7\ (fs(=) — £39),0} ;
max { A3 (f2(x) — f37), 0} +min {A3 (f2(x) — f3),0}
+max (A (fy() = f£9),0} +min {3 (fa() — 5,0} }

forqg = 3:

§5(f (), A, M%) =max {AY (fi(z) — f1%),0} + min {\ (fi(z) — f1),0}
+max {5 (fa(z) — f37),0} + min { X' (fa(z) — f37),0}
4+ max {)\3U(f3($) — f:f”),()} + min {)\3A(f3($) — ff),O} .

Next we give some graphical illustrations of 1-level sets3idimensional
space for both parameterized ASfand two-slope parameterized ASE to see
the difference between them. The algebraic forngipfs given in [11]. The view
is restricted within a rectanguldyf = (fy, fo, f3)7 : =2 < f; < 1,7 € N3} and
the reference point is assumed to & = (0,0,0)”. All the objective functions
are assumed to be identity mapping&r) = « and all weighting coefficients are
equal to onepY, AV AT A A A4l = 1. Figures 2a, 3a and 4a show 1-level set
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of 5, 5% ands% respectively and Figures 2b, 3b and 4b show 1-level sé},pf
5% ands%, respectively.

Notice that a choice of the parameteaffects to the shape di-levels. These
R-levels may vary from sharp to flat. Those cases where faegegaaallel to the
facesf f2, fi1fs or fof3 correspond to situation then one of the maxima equals
to one and other two are less than one or zero. If sum of two mexeiquals to
one and the third is less than one or zero, it correspondsatbeewehere faces are
sloped and parallel to the coordinate rays. If the all thregima are positive and

sum of them equals to one we have either a flat face (see Fipliar 4 triangle

pyramid with a top vertexs, 1, 1) in Figure 3b. These top vertices corresponds

to those cases when all three maxima are participating.

Note that if the resulting optimal value di-level set is positive in case of
TSPASF, then it corresponds to the case of unachievableerefe point. A neg-
ative value signals about reference point achievabilitycdse of PASF negative

value of R-level set is not possible.
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5 Computational experiments

In order to explore the behavior of TSPASF several test probldescribed in
[9] are used. The computational calculations are carri¢dwpapplying multiob-
jective proximal bundle method [5]. This method is desigf@ctonconvex and
constrained problems with possibly several objective fions.

Computational tests are divided into two groups based an ¢bavexity. In
both cases twenty reference points between the ideal amdaaaat are randomly
generated and the used weighting vecidfs A are of the form

1
AR

1

’\A:fR_fI

)‘U
as suggested in [3].

In these computational tests we have concentrated on smitlytee aspects.
The first one is to guarantee that by changing the value ofdnenpeter; we can
indeed obtain different solutions, not only in theory buscain practice. Another
interesting issue is a quality of the solutions producedosv much solutions dif-
fer. The last aspect, which has been singled out and studidte computational
time.

According to our results at the most of the time the solutiobtined by
varying the value of the parametgdiffer and the difference is significant both in
convex and nonconvex test problems. In the convex case thioss produced
with different values of the parametegrare the same order whereas in the non-
convex test problem = 1 turns out to be clearly the most time-consuming value
of the parametey. Thus with TSPASF by varying metrics between Chebyshev
and linear metric, different solutions with good qualitg abtained without grow-
ing computational efforts compared with the two-slope ASFejqualing the case
g = 1in TSPASF.

In the following convex and nonconvex test problems areyereal closer.
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5.1 Convex case

We consider closer the following convex Chankong-Haimssgeoblem [9]

min  f(z) = ((z1 — 1)> + (z2 — 1)%, (21 — 2)* + (22 — 3)*, (21 — 4)* + (22 — 2)*)
s.t. x1+2x2 <10

0< 2 <10

0<uz9<4,

with three objectives and two variables.

In the following, we refer to cases where for one referendatp solution
is calculated solution with every value of the parameter N5 and thus twenty
cases are considered due to the number of the generateshedgroints. Among
these randomly generated reference points, there &eofl@chievable reference
points and50% of unachievable reference points.

In Table 1 the differences of solutions and also the qualitthese solutions
are analyzed. Here solutions with linear metgc=£ 3) and Chebyshev metric
(¢ = 1) are compared with the case where- 2 and the used metric is something
between Chebyshev and linear metric.

The first row in Table 1 presents the percentage value of cakese both
valuesq = 1 andq = 3 give the same solution as the solution obtained with value
q = 2. As Table 1 says with values= 3 andq = 2 we never obtain the same
solution and with valuegs = 1 andq = 2 only 15% of cases solutions were the
same. Thus by varying the value of the parameteostly different solutions are
obtained.

In the second row the quality of the solutions by calculatihg (relative)
distances between solutions is considered. Table 1 repha@rtaverages of these
distance calculations. In comparison of distances betwekions obtained with
g = 1 andq = 2 the average distance in objective space is 0.52065. By @&xgju
the cases where the same solution was obtained every diskehongs to the
interval from 0.069274 to 1.59813 in objective space. Theraye distance with
valuesq = 2 andg = 3is 0.31203 in objective space and each of these solutions
belongs to the interval from 0.11194 to 0.70154 in objecspace. Based on
these calculations it can be said that the differences leetwiee solutions are
significant.

Since the solutions obtained by varying the value of therpatarq actually
are various solutions it is also interesting to know whatghee of the different
solutions is in terms of number of iterations. To explors gspect, in Table 2 we
describe the average number of iterations and functios caéded when calcu-
lations are carried out with multiobjective proximal buadhethod. In these cal-
culations, both average number of iterations and functadis are approximately
on the same order regardless of the value of the parameter
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Table 1: Differences of solutions

Convex case qg=1 qg=3
Cases where* with ¢ = 2 equals tac* with 15% 0%
Average relative distance betwegf*) with ¢ = 2 and| 0.52065 0.3120B
Nonconvex case g=1 q=3
Cases where* with ¢ = 2 equals tax* with 0% 10%
Average relative distance betwegqr*) with ¢ = 2 and| 201203.24 0.15565

Table 2: Computational times

Convex case gq=1q=2q=3
Average number of iterations [12.20 16.95 6.0(
Average number of function call$5.10 22.80 8.1(
Nonconvex case g=1qg=2q=3
Average number of iterations | 30.9 7.45 5.85
Average number of function call$3.3 15.45 13.6

5.2 Nonconvex case

We scrutinize the following nonconvex Water resources pilagtest problem [9]

min f(.’L') — (60.001x1x?.02x%’ 05%%’ _60.00511:6&).001:6%)
s.t. 0.01<x <13
0.01 < x5 < 10,

with are three objectives and two variables as in the exaprplelem in the con-
vex case. Also in this nonconvex case 20 different refergooats are generated
randomly. There are noBb% of achievable an@5% of unachievable reference
points.

In Table 1, the quality of solutions is analyzed also in theeamvex case. As
Table 1 shows with values= 1 andq = 2 the same solution was never obtained
and with values; = 2 andq = 3 only 10% of cases the solutions produced are
the same. Thus different solutions are obtained by varyiegpirametey also in
the nonconvex case. By comparing this with the convex casesee that the total
number of the same solutions is now smaller and the samea@udidre produced
only with valuesg = 2 andq = 3 whereas in the convex case the same solutions
are produced with values= 1 andq = 2.

When we consider the (relative) distances between theisofuproduced de-
scribed in Table 1, we see that in the nonconvex case thendesaare significant
as was also in the convex example. The average distancedesmtutions ob-
tained withg = 1 andq = 2 is 201203.24 in objective space and every distance
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belongs to the interval from 0.0075685 to 762114 The digabetween solutions
obtained withg = 2 andq = 3 is 0.15565 in objective space. By excluding the
cases where the same solution was obtained every distalocgybé¢o the interval
from 0.00067393 to 0.99999 in objective space.

As said, in Table 2 is described computational times and encthnvex case
the value of the parameterdo not affect computational time significantly. In the
nonconvex case the most time-consuming value of the paeamest1 represent-
ing Chebyshev type function. In this case the number oftitama and function
calls are both significantly larger than corresponding ealior other two values
of the parametey.

6 Conclusion

In this paper, we have presented a new family of achievencatdrszing functions
based on a parameterization utilizing two different weiigptvectors depending
on whether the reference point is achievable or not. We haveep that we
always find at least weakly Pareto optimal solution and ifsblkition is unique it
is Pareto optimal. We have also proven that every weaklyt@agimal solution
can be produced. Furthermore, we can find different solstlmnchanging the
value of the parametey, the reference point or weighting vectors. Additionally,
to use TSPASFs there is no need for any assumptions abowférence point or
for the test of achievability of the reference point.

We have also illustrated the shapes of differBAevels and the computational
tests have been performed for both convex and nonconvelegonsb These results
have shown that the quality of solutions produced is goodthedomputational
time does not grow with different values of the parametierthe convex case but
in nonconvex case Chebyshev type function turn out the mm&t-¢onsuming
value of the parameter

The presented TSPASF gives a systematic way to produceetifféveakly)
Pareto optimal solutions from the same preference infaonawith different
metrics. The property of this kind could be used for exampledme interactive
methods. Different solutions can be calculated with aluealof the parameter
or just some of them. Thus it is interesting to know more alhmyt the valuey
affects the shape ait-level.
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