Where academic tradition
meets the exciting future

Self-Timed Thermal Sensing and Monitoring of Multicore Systems

Kameswar Rao Vaddina, Ethiopia Nigussie, Pasi Liljeberg, Juha Plosila, Self-Timed Thermal Sensing and Monitoring of Multicore Systems. In: IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), IEEE, 2009.

Abstract:

As the number of cores increases thermal challenges increase, thereby degrading the performance and reliability of the system. We approach this challenge with a self-timed thermal monitoring method which is based on the use of thermal sensors. Since leakage currents are sensitive to temperature and increase with scaling, we propose the use of a leakage current based thermal sensing for monitoring purposes. In this work we have implemented a novel thermal sensing circuit in 65nm CMOS technology, which converts analog temperature information into digital form. We have also proposed a novel thermal sensing and monitoring interconnection network structure based on self-timed signaling, comprising of an encoder/transmitter and decoder/receiver. We have performed power supply noise, additive noise on sensor input signal and dynamic power supply voltage variation analysis on the thermal sensing circuit and show that it is robust enough under different operating temperatures.

BibTeX entry:

@INPROCEEDINGS{inpKaNiLiPl09a,
  title = {Self-Timed Thermal Sensing and Monitoring of Multicore Systems},
  booktitle = {IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)},
  author = {Vaddina, Kameswar Rao and Nigussie, Ethiopia and Liljeberg, Pasi and Plosila, Juha},
  publisher = {IEEE},
  year = {2009},
}

Belongs to TUCS Research Unit(s): Microelectronics

Edit publication