Where academic tradition
meets the exciting future

A Sparse Regularized Least-Squares Preference Learning Algorithm

Evgeni Tsivtsivadze, Tapio Pahikkala, Antti Airola, Jorma Boberg, Tapio Salakoski, A Sparse Regularized Least-Squares Preference Learning Algorithm. In: Anders Holst, Per Kreuger, Peter Funk (Eds.), Proceedings of the Tenth Scandinavian Conference on Artificial Intelligence (SCAI 2008), Frontiers in Artificial Intelligence and Applications 173, 76–83, IOS Press, 2008.

Abstract:

Learning preferences between objects constitutes a challenging task that notably differs from standard classification or regression problems. The objective involves prediction of ordering of the data points.
Furthermore, methods for learning preference relations usually are computationally more demanding than standard classification or regression methods. Recently, we have proposed a kernel based preference learning algorithm, called RankRLS, whose computational complexity is cubic with respect to the number of training examples.
The algorithm is based on minimizing a regularized least-squares approximation of a ranking error function that counts the number of incorrectly ranked pairs of data points. When nonlinear kernel functions are used, the training of the algorithm might be infeasible if the amount of examples is large. In this paper, we propose a sparse approximation of RankRLS whose training complexity is considerably lower than that of basic RankRLS. In our experiments, we consider parse ranking, a common problem in natural language processing. We show that sparse RankRLS significantly outperforms basic RankRLS in this task. To conclude, the advantage of sparse RankRLS is the computational efficiency when dealing with large amounts of training data together with high dimensional feature representations.

Files:

Abstract in PDF-format

BibTeX entry:

@INPROCEEDINGS{inpTsPaAiBoSa08a,
  title = {A Sparse Regularized Least-Squares Preference Learning Algorithm},
  booktitle = {Proceedings of the Tenth Scandinavian Conference on Artificial Intelligence (SCAI 2008)},
  author = {Tsivtsivadze, Evgeni and Pahikkala, Tapio and Airola, Antti and Boberg, Jorma and Salakoski, Tapio},
  volume = {173},
  series = {Frontiers in Artificial Intelligence and Applications},
  editor = {Holst, Anders and Kreuger, Per and Funk, Peter},
  publisher = {IOS Press},
  pages = {76–83},
  year = {2008},
  keywords = {Prefrence Learning, Sparse Approximation, Kernel Methods},
}

Belongs to TUCS Research Unit(s): Algorithmics and Computational Intelligence Group (ACI), Turku BioNLP Group

Publication Forum rating of this publication: level 1

Edit publication