You are here: TUCS > PUBLICATIONS > Publication Search > Geometrical Tile Design for Co...
Geometrical Tile Design for Complex Neighborhoods
Eugen Czeizler, Lila Kari, Geometrical Tile Design for Complex Neighborhoods . Frontiers in Computational Neuroscience , 2009.
Abstract:
Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e. square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k+1) rectangle.
BibTeX entry:
@ARTICLE{jCzKa09a,
title = {Geometrical Tile Design for Complex Neighborhoods },
author = {Czeizler, Eugen and Kari, Lila},
journal = {Frontiers in Computational Neuroscience},
year = {2009},
}
Belongs to TUCS Research Unit(s): Computational Biomodeling Laboratory (Combio Lab)
Publication Forum rating of this publication: level 1