Where academic tradition
meets the exciting future

State Complexity of Power

Michael Domaratzki, Alexander Okhotin, State Complexity of Power. TUCS Technical Reports 845, Turku Centre for Computer Science, 2008.

Abstract:

The number of states in a deterministic finite automaton (DFA)
recognizing the language <i>L</i><sup><i>k</i></sup>,
where <i>L</i> is regular language recognized by an <i>n</i>-state DFA,
and <i>k</i> &ge; 2 is a constant,
is shown to be at most <i>n</i> 2<sup>(<i>k</i>&#8722;1)<i>n</i></sup>
and at least (<i>n</i>&#8722;<i>k</i>) 2<sup>(<i>k</i>&#8722;1)(<i>n</i>&#8722;<i>k</i>)</sup> in the worst case,
for every <i>n</i> > <i>k</i>
and for every alphabet of at least six letters.
Thus, the state complexity of L<sup><i>k</i></sup>
is &Theta;(<i>n</i> 2<sup>(<i>k</i>&#8722;1)<i>n</i></sup>).
In the case <i>k</i>=3
the corresponding state complexity function for <i>L</i><sup>3</sup>
is determined as
(6<i>n</i>&#8722;3)/8 4<sup><i>n</i></sup> &#8722; (<i>n</i>&#8722;1)2<sup><i>n</i></sup> &#8722; <i>n</i>
with the lower bound witnessed by automata over a four-letter alphabet.
The nondeterministic state complexity of <i>L</i><sup><i>k</i></sup>
is demonstrated to be <i>nk</i>.
This bound is shown to be tight over a two-letter alphabet.

Files:

Full publication in PDF-format

BibTeX entry:

@TECHREPORT{tDoOk07a,
  title = {State Complexity of Power},
  author = {Domaratzki, Michael and Okhotin, Alexander},
  number = {845},
  series = {TUCS Technical Reports},
  publisher = {Turku Centre for Computer Science},
  year = {2008},
  keywords = {descriptional complexity, finite automata, state complexity, combined operations, concatenation},
  ISBN = {978-952-12-1964-1},
}

Belongs to TUCS Research Unit(s): FUNDIM, Fundamentals of Computing and Discrete Mathematics

Edit publication