You are here: TUCS > PUBLICATIONS > Publication Search > State Complexity of Power
State Complexity of Power
Michael Domaratzki, Alexander Okhotin, State Complexity of Power. TUCS Technical Reports 845, Turku Centre for Computer Science, 2008.
Abstract:
The number of states in a deterministic finite automaton (DFA)
recognizing the language <i>L</i><sup><i>k</i></sup>,
where <i>L</i> is regular language recognized by an <i>n</i>-state DFA,
and <i>k</i> ≥ 2 is a constant,
is shown to be at most <i>n</i> 2<sup>(<i>k</i>−1)<i>n</i></sup>
and at least (<i>n</i>−<i>k</i>) 2<sup>(<i>k</i>−1)(<i>n</i>−<i>k</i>)</sup> in the worst case,
for every <i>n</i> > <i>k</i>
and for every alphabet of at least six letters.
Thus, the state complexity of L<sup><i>k</i></sup>
is Θ(<i>n</i> 2<sup>(<i>k</i>−1)<i>n</i></sup>).
In the case <i>k</i>=3
the corresponding state complexity function for <i>L</i><sup>3</sup>
is determined as
(6<i>n</i>−3)/8 4<sup><i>n</i></sup> − (<i>n</i>−1)2<sup><i>n</i></sup> − <i>n</i>
with the lower bound witnessed by automata over a four-letter alphabet.
The nondeterministic state complexity of <i>L</i><sup><i>k</i></sup>
is demonstrated to be <i>nk</i>.
This bound is shown to be tight over a two-letter alphabet.
Files:
Full publication in PDF-format
BibTeX entry:
@TECHREPORT{tDoOk07a,
title = {State Complexity of Power},
author = {Domaratzki, Michael and Okhotin, Alexander},
number = {845},
series = {TUCS Technical Reports},
publisher = {Turku Centre for Computer Science},
year = {2008},
keywords = {descriptional complexity, finite automata, state complexity, combined operations, concatenation},
ISBN = {978-952-12-1964-1},
}
Belongs to TUCS Research Unit(s): FUNDIM, Fundamentals of Computing and Discrete Mathematics