You are here: TUCS > PUBLICATIONS > Publication Search > Border Correlation of Binary W...
Border Correlation of Binary Words
Tero Harju, Dirk Nowotka, Border Correlation of Binary Words. TUCS Technical Reports 546, Turku Centre for Computer Science, 2003.
Abstract:
The border correlation function
β : <i>A</i><sup>*</sup> → <i>A</i><sup>*</
sup>,
for <i>A</i> = {<i>a</i>, <i>b</i>}, specifies
which conjugates (cyclic shifts)
of a given word <i>w</i> of length <i>n</i> are bordered, i.e.,
β(<i>w</i>) = <i>b</i><sub>0</sub><i>b</i><sub>1</
sub>...<i>b</i><sub><i>n</i>-1</sub>,
where <i>b</i><sub><i>i</i></sub> = <i>a</i>
or <i>b</i>
according to whether the <i>i</i>-th cyclic shift
σ<sup><i>i</i></sup>(<i>w</i>)
of <i>w</i> is unbordered or bordered.
Except for some special cases, no binary word <i>w</i>
has two consecutive unbordered conjugates (σ<sup><i>i</i></sup>(<i>w</i>)
and σ<sup><i>i</i>+1</sup>(<i>w</i>)).
We show that this is optimal: in every cyclically overlap-free
word every other conjugate is unbordered.
We also study the relationship between unbordered conjugates and
critical points, as well as, the dynamic system given by iterating the
function β. We prove that,
for each word <i>w</i> of length <i>n</i>, the sequence
<i>w</i>, β(<i>w</i>), β<sup>2</sup>(<i>w</i>), ...
terminates either in <i>b</i><sup><i>n</i></sup> or
in the cycle of conjugates of the word
<i>ab</i><sup><i>k</i></sup><i>ab</i><sup><i>k</i>+1</sup>
for <i>n</i> = 2<i>k</i>+3.
Files:
Full publication in PDF-format
BibTeX entry:
@TECHREPORT{tHaD03a,
title = {Border Correlation of Binary Words},
author = {Harju, Tero and Nowotka, Dirk},
number = {546},
series = {TUCS Technical Reports},
publisher = {Turku Centre for Computer Science},
year = {2003},
keywords = {combinatorics on words, border correlation, binary words},
ISBN = {952-12-1205-5},
}
Belongs to TUCS Research Unit(s): FUNDIM, Fundamentals of Computing and Discrete Mathematics