Where academic tradition
meets the exciting future

On the Equation xk = z1k1z2k2znkn in a Free Semigroup

Tero Harju, Dirk Nowotka, On the Equation <i>x<sup>k</sup></i> = <i>z</i><sub>1</sub><sup><i>k</i><sub>1</sub></sup><i>z</i><sub>2</sub><sup><i>k</i><sub>2</sub></sup>…<i>z</i><sub><i>n</i></sub><sup><i>k</i><sub><i>n</i></sub></sup> in a Free Semigroup. TUCS Technical Reports 602, Turku Centre for Computer Science, 2004.

Abstract:

Word equations of the form
<i>x<sup>k</sup></i> = <i>z</i><sub>1</sub><sup><i>k</i><sub>1</sub></sup><i>z</i><sub>2</sub><sup><i>k</i><sub>2</sub></sup>...<i>z</i><sub><i>n</i></sub><sup><i>k</i><sub><i>n</i></sub></sup>
are considered in this paper. In particular, we investigate
the case where <i>x</i> is of different length than <i>z<sub>i</sub></i>,
for any <i>i</i>,
and <i>k</i> and <i>k<sub>i</sub></i> are at least 3,
for all 1 &le; <i>i</i> &le; <i>n</i>, and <i>n</i> &le; <i>k</i>.
We prove that for those equations all solutions are of rank 1, that is,
<i>x</i> and <i>z<sub>i</sub></i> are powers of the same word for all
1 &le; <i>i</i> &le; <i>n</i>.
It is also shown that this result implies a well-known result
by K.I. Appel and F.M. Djorup about the more special case
where <i>k<sub>i</sub></i> = <i>k<sub>j</sub></i>
for all 1 &le; <i>i</i> < <i>j</i> &le; <i>n</i>.

Files:

Abstract in PDF-format

BibTeX entry:

@TECHREPORT{tHaNo04a,
  title = {On the Equation xk = z1k1z2k2znkn in a Free Semigroup},
  author = {Harju, Tero and Nowotka, Dirk},
  number = {602},
  series = {TUCS Technical Reports},
  publisher = {Turku Centre for Computer Science},
  year = {2004},
  keywords = {combinatorics on words, word equations},
  ISBN = {952-12-1342-6},
}

Belongs to TUCS Research Unit(s): FUNDIM, Fundamentals of Computing and Discrete Mathematics

Edit publication